
Quantum Chemistry

Koichi OHNO

2004



Contents

1 Quantum Theory and The Wave Equation 1
1.1 What is quantum chemistry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Charged particles constituting matter and the Coulomb force . . . . . . . . . . . . 4
1.3 Waves and oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Quantum theory of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Atomic spectra and energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Particles and wave characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Wave functions and probabilities of finding particles . . . . . . . . . . . . . . . . . 19
1.9 Stationary states and eigenvalue equations . . . . . . . . . . . . . . . . . . . . . . . 20
1.10 A particle in a one-dimensional box . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.11 Generalization of the wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.12 The motion in two-particle systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.13 The angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.14 Measured values and expectation values . . . . . . . . . . . . . . . . . . . . . . . . 35
1.15 The commutation relation and the uncertainty principle . . . . . . . . . . . . . . . 36

2 Atom 39
2.1 The hydrogenic atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Forms of atomic orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Classification of atomic orbitals . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 s,p,d functions for the angular part . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Angular dependence and figures of polar coordinates . . . . . . . . . . . . . 46
2.2.4 The radial dependence and the radial distribution . . . . . . . . . . . . . . 48
2.2.5 Contour lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Many electron atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 Independent electron model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.2 Screening effect and effective nucleus charge model . . . . . . . . . . . . . . 52
2.3.3 Atomic orbitals and energy levels for many electron atoms . . . . . . . . . . 53

2.4 Electron spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Experimental grounds for the electron spin . . . . . . . . . . . . . . . . . . 53
2.4.2 Operators, eigen functions, and quantum numbers for electron spin . . . . . 54
2.4.3 Restriction to many-electron wavefunctions and the Pauli principle . . . . . 55

2.5 Electron configuration in atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 The periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6.1 Ionization energy and electron affinity . . . . . . . . . . . . . . . . . . . . . 61
2.6.2 Effective nuclear charge and rules to calculate screening constants . . . . . 63
2.6.3 Effective nuclear charge and ionization energies . . . . . . . . . . . . . . . . 64
2.6.4 Effective nuclear charge and electron affinity . . . . . . . . . . . . . . . . . 65

2.7 Excited atoms and spectral terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.1 The ground state of a helium atom . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.2 Excited states of a helium atom . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.3 Angular momenta and spectral terms for many electron systems . . . . . . 67

i



CONTENTS ii

3 Basic methods of approximation 71
3.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.2 Perturbation theory for degenerate states . . . . . . . . . . . . . . . . . . . 73
3.1.3 Modification of states by perturbation . . . . . . . . . . . . . . . . . . . . . 74

3.2 The variation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.1 The variation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.2 The variation method using a linear-combination approximation (Ritz’s

variation method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 The SCF method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Methods for many-atom systems and their applications 82
4.1 Motion of electrons and nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 The Hamitonian operator for nuclei and electrons . . . . . . . . . . . . . . . 82
4.1.2 Separation of nuclear and electronic motions . . . . . . . . . . . . . . . . . 83
4.1.3 The adiabatic potentials for diatomic molecules . . . . . . . . . . . . . . . . 84

4.2 The binding force and the electron density . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.1 Forces acting on nuclei and Feynman’s electrostatic theorem . . . . . . . . . 87
4.2.2 The binding region and the antibinding region . . . . . . . . . . . . . . . . 88
4.2.3 The virial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 The molecular orbital method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.1 The SCF method using linear combinations . . . . . . . . . . . . . . . . . . 90
4.3.2 The basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 The non-empirical method and the semi-empirical method . . . . . . . . . . 92
4.3.4 Electron configuration and HOMO/LUMO . . . . . . . . . . . . . . . . . . 92
4.3.5 Orbital energies and ionization energies . . . . . . . . . . . . . . . . . . . . 93
4.3.6 Methods including the electron correlation . . . . . . . . . . . . . . . . . . . 94

4.4 Quantum chemical calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.1 Molecular structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Molecular vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 Heats of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Electron distribution and the electric dipole moment . . . . . . . . . . . . . 95
4.4.5 Ionization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Molecular orbital and molecular structure 99
5.1 Hydrogen molecule ion and hydrogen molecule . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Hydrogen molecule ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 The hydrogen molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 The Hückel molecular orbital method . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1 Fundamental treatments in the Hückel method . . . . . . . . . . . . . . . . 104
5.2.2 The simple Hückel method . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.3 The Extended Hückel method . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Overlap between orbitals and orbital interactions . . . . . . . . . . . . . . . . . . . 107
5.3.1 Overlap between orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 The principles of orbital interactions . . . . . . . . . . . . . . . . . . . . . . 109

5.4 AH type and AH 2 type molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Procedures using the principle of orbital interactions . . . . . . . . . . . . . 114
5.4.2 AH type molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 AH 2 type molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.4 The Walsh diagram and the bond angle . . . . . . . . . . . . . . . . . . . . 121

5.5 A 2 type molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.6 Hybridization of orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Mixtures of orbitals in the same atom . . . . . . . . . . . . . . . . . . . . . 127
5.6.2 sp hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.3 sp2 hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.4 sp3 hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.5 other types of hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



Produced by Koichi OHNO 2004/02/28 E-mail:ohnok@qpcrkk.chem.tohoku.ac.jp iii

5.7 The three-center-two-electrton-bond and the hydrogen bond . . . . . . . . . . . . . 131
5.7.1 Three center orbital interactions . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7.2 Linear three-center-two-electron-bonds . . . . . . . . . . . . . . . . . . . . . 132
5.7.3 Bent three-center-two-electron-bonds . . . . . . . . . . . . . . . . . . . . . . 135
5.7.4 The hydrogen bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Electron energy levels and photoelectron spectra . . . . . . . . . . . . . . . . . . . 136
5.8.1 Photoelectron spectra and electron energy levels of molecular orbitals . . . 136
5.8.2 Photoelectron spectrum of the hydrogen molecule and the binding energies 138

6 Molecular orbital and chemical reaction 144
6.1 Orbital theory of reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.1 Electron occupation number and reactivity . . . . . . . . . . . . . . . . . . 144
6.1.2 Number of unpaired electrons and the valency . . . . . . . . . . . . . . . . 146
6.1.3 The HOMO–LUMO principle and the frontier orbital theory . . . . . . . . 147

6.2 The chemical stability and the reactivity of rare gases . . . . . . . . . . . . . . . . 149
6.2.1 Conditions for the chemical stability . . . . . . . . . . . . . . . . . . . . . . 149
6.2.2 The reactivity of rare gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Cyclic addition reactions and the exchange of chemical bonds . . . . . . . . . . . . 150
6.3.1 The Diels-Alder reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.2 HOMO–LUMO interactions and the symmetry of orbitals . . . . . . . . . . 153

6.4 Selectivity and substitution effects in chemical reactions . . . . . . . . . . . . . . . 155
6.4.1 Deformation effects of HOMO and LUMO by introduction of functional groups155
6.4.2 Regioselectivity of reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Chapter 1

Quantum Theory and The Wave
Equation

In the last year of the nineteenth century, some experimental results concerned with thermal
radiation were found to be incompatible with the theory of physics in those years. In order to
overcome this difficulty, a new theory known as quantum theory was developed, and in the nineteen
twenties, quantum mechanics was founded. The quantum theory was then applied to various
problems in chemistry such as chemical bonding and chemical reactions, and today quantum
chemistry has become an important field of chemistry.

In this chapter, we shall see the scope of quantum chemistry at first, and then interactions
between charged particles as well as wave phenomena will be introduced as preliminary background
of the theory. After learning a short history of the quantum theory, we shall study foundations of
quantum mechanics.

1.1 What is quantum chemistry?

Quantum chemistry is an application of quantum mechanics to chemistry. Quantum chemistry
enables us to understand and predict structures, properties, and reaction mechanisms in various
substances. For these purposes, mathematical techniques are essential. Since electronic comput-
ers had not yet been created in the early days when quantum mechanics was born, the scope of
chemical phenomena to which quantum chemistry can be applied in practice, was considerably
limited to a very small range of problems. However, very rapid progress of modern computing
instruments in recent years has prompted a remarkable extension of the scope of quantum chem-
istry. In this part, we shall see what can be clarified and predicted after having studied quantum
chemistry.

(1) Origin of characteristics of chemical elements can be elucidated. (cf.2. 5, 2. 6, 6. 1, 6. 2)
There are several groups of elements with similar properties: alkali metals easily lose an electron

(highly electropositive), halogens tend to accept an electron (highly electronegative), and noble
gases are inert. Although periodic characteristics of elements are to be studied in middle or high
school, how these properties of elements originate from natural laws cannot be explained at the
level of school chemistry. There is an explanation that noble gases are inert because of their stable
electron configurations. Why the electron configurations of noble gases are particularly stable? It
was discovered in 1962 that even a noble gas can react to yield its compounds, though the fact
is usually disregarded in school chemistry. Why can an ”inert” noble gas undergo reactions? Are
there any conditions for its reactivity? The origin of characteristic properties of chemical elements
including the mysterious reactivity of noble gases can be elucidated with quantum mechanics.

(2) Molecular structures can be predicted. (cf. 4. 4, 5. 4–5. 7)
In every textbook for school chemistry, a chart of molecular structures such as fig:1.1 is shown.

These structures were of course determined by experimental studies. Skeletal structures, such as
a tetrahedron for methane, an isosceles triangle for water, and a hexagon with six equivalent CH
bonds extending externally for benzene, are all very interesting. Why is methane not a cross?

1



CHAPTER 1. QUANTUM THEORY AND THE WAVE EQUATION 2

Why is water not linear? Why in benzene do all CC bonds as well as all CH bonds have the same
bond lengths? Such questions can be answered by quantum chemistry. Bond lengths and angles
can be obtained by quantum chemical calculations.

Figure 1.1: Skeletal structures of molecules. Numerical figures are bond lengths in nm and bond
angles in degree.

(3) Molecular spectra can be predicted. (cf. 4. 4)
We can see vivid pictures demonstrating characteristic colors of various materials in textbooks
for school chemistry. Colorful pictures on TV also are chemical products, controlled electrically.
Colors of matter are inherently determined by spectra of light, i.e. by electromagnetic waves.
The mechanisms by which colors are produced in solutions and solids containing molecules and
ions can be understood by quantum chemistry. The wavelengths of infrared and microwave radi-
ation that are absorbed or emitted by water and carbon monoxide molecules can be calculated by
quantum chemical theories. By comparing observed spectra in interstellar space with quantum
chemical calculations, molecules producing those spectra have been identified.

(4) Heats of reaction can be predicted (cf. 4. 4)
The heat of a chemical reaction need not necessarily be deduced from some data on reactions in-
cluding related compounds and Hess’s Law of Constant Heat Summation. Without experimental
data, heats of chemical reactions can be obtained by quantum chemical calculations.

(5) What will be produced and how the reactions will proceed can be predicted (cf. 6. 3, 6. 4)
Vinyl compounds having a double bond undergo addition reactions or addition polymerization, as
can be seen in a textbook for school chemistry. Polyethylene and polybutadiene are polymerized
products of a single monomer unit of ethylene and butadiene, respectively. In 1928 it was dis-
covered that a mixture of ethylene and butadiene leads to a unique production of a cyclohexene
ring (Reaction Scheme I). Such a reaction is very useful to obtain a six-membered ring of carbon
atoms, since the reaction easily occurs to yield the desired product selectively without useless con-
sumption of the reactants. Why do ethylene molecules not easily react with each other to produce
a four-membered cyclobutane ring (Reaction scheme Ib)? The explanation can be elucidated by
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quantum chemical theory.

(End-atoms are H atoms)

Moreover, two types of ring products (A) and (B) in the Reaction scheme II can be assumed to
be produced from ethylene and butadiene derivatives in which a hydrogen atom is substituted by
a formyl group (-CHO) and a methoxy group (-OCH3), respectively. However, only (A) can be
produced in the real reaction. If several products are formed, we need to make efforts to separate
them with a considerable loss of reactants. Therefore, a reaction producing only one product is
very useful in chemical synthesis. Quantum chemistry can provide theoretical designs of reaction
schemes leading to selective production of compounds.

(CH bonds are omitted)

The above examples are only part of the full range of modern applications of quantum chemistry.
Recent developments in computing instruments have rapidly extended the applicable range of
quantum chemistry. Mathematical and computing methods for quantum chemistry have been
developed in various levels, from primitive and qualitative methods to the most sophisticated and
very quantitative methods. In the 21st century, the applicable range of quantum chemistry will
be continuously expanded to cover uncultivated areas.
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1.2 Charged particles constituting matter and the Coulomb
force

The elements of all matter are nuclei and electrons with positive and negative electric charges,
respectively. Combinations and interactions of these particles give various structures, properties,
and reactions of matter. First of all, it is important to understand fundamental aspects of electric
interactions. An atom is composed of a nucleus and some electrons; the positive electric charge
of the nucleus and the number of electrons surrounding the nucleus are both equal to the atomic
number (Z). When an atom loses or gains an electron, it becomes a positive or negative ion,
respectively. The tendency of an atom to become an ion by losing or gaining an electron is
different depending on the kind of the chemical element classified by the atomic number. This
tendency is closely related to the chemical properties of the element.

Example 1.1 Calculate e, the electric charge of an electron, using Faraday’s constant of
96485 C mol−1 and Avogadro’s constant of 6.022 × 1023 mol−1. (1 C is the electric charge that
is carried by an electric current of 1 A for 1 s)

(Solution) The electric charge of 1 mole of electrons is 96485 C mol−1 from Faraday’s constant,
and the number of particles per 1 mol is from Avogadro’s constant. Using these numbers, the
electric charge of an electron is calculated as

e =
96485 C mol−1

6.022× 1023 mol−1
= 1.602× 10−19 C

In general, matter losing an electron carries a positive charge, and matter gaining an electron
carries a negative charge. Matter carrying electric charges exert forces one another along the
directions connecting them. A pair of charges with the same sign repel each other, and charges with
opposite signs attract mutually. The force F exerted on the charges has a magnitude proportional
to the product of the charges of Q1 and Q2 and inversely proportional to the square of the distance
r. This is called Coulomb’s law and expressed as

F =
Q1 ·Q2

4πε0r2
(1.1)

Here, ε0 is a fundamental physical constant called permittivity of vacuum (cf. Appendix 1).
Although Coulomb’s law was discovered by observing forces between charged bodies, this law

can also be applied to very small particles such as electrons and nuclei. Therefore, Coulomb’s law
is deeply related to atomic properties of both physical (e.g. color of absorbed and emitted light)
and chemical (tendency of ionization and reactivity) types.

Particles with masses exert attractive forces known as universal gravitation toward one another.
However, for particles with small masses such as electrons and molecular ions, gravitational forces
are negligibly small in comparison with those given by Coulomb’s law (Coulomb forces).

Example 1.2 When a unit negative charge is placed at the midpoint between a pair of unit
positive charges separated by a distance R, which force acting on a positive charge is the larger,
the force exerted by the negative charge or the force caused by the other positive charge? Find
the direction to which the positive charge tends to move.
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(Solution) A positive charge undergoes an attractive force of F− = −1/4πε0(R/2)2 by the negative
charge placed at the distance of R/2 and a repulsive force of F+ = 1/4πε0R

2 by the other positive
charge at the distance R. Since the former is 4 times larger than the latter, each positive charge
tends to move toward the other positive charge. (By the action of the intervening negative charge,
the positive charges tend to bind one to the other. This is related to the phenomenon that nuclei
with positive charges can be held together under the action of electrons.)

When a charged particle is placed at a position between a pair of metallic plates with a certain
electric potential difference (voltage), then a positive charge undergoes a force toward the plate
of lower voltage and a negative charge toward the higher one. The magnitude of the force is
proportional to the absolute value of the electric charge. Thus, under the same potential difference,
the force acting on an electron and that on a monovalent positive ion have the same magnitude,
though the directions are opposite.

When an electron in a resting state is accelerated from a metal plate of a low voltage to another
metal plate of higher voltage with an electric potential difference of 1 volt (V), the kinetic energy
of the electron becomes 1 electron volt (eV). The work to carry a positive electric charge of 1
Coulomb (C) up to a position where the voltage is 1 V higher than the starting point is 1 Joule
(J), 1 eV = 1.602× 10−19 J. A Brown tube for a TV set (cathode ray tube or CRT) is equipped
with an electron gun (cathode) from which electrons are emitted and accelerated by a potential
difference of ca. 10 kV. Such a beam of electrons is then focused onto the fluorescent screen by the
action of an electron lens made of magnetic deflection coils and displays a spot of light emission.

Example 1.3 Calculate the velocity of an electron with a kinetic energy of 1 eV.

(Solution) The kinetic energy of an electron (mass of an electron is m) is expressed as 1
2mv

2,
and 1 eV = 1.602 × 10−19 J. Thus, 1

2mv
2 = 1.602 × 10−19 J. By using the mass of electron

m = 9.109× 10−31 kg, the velocity of the electron v is obtained as

v =
(

2× 1.602× 10−19

9.109× 10−31

)1/2

= 5.93× 105 m s−1

As can be seen from the above Example 1, the velocity of an electron of 1 eV is about 600 kms−1.
Velocities of ions, with a kinetic energy of 1 eV are considerably slower in comparison with the
velocity of an electron. This is because the mass of an ion M is considerably larger than the mass
of an electron m. Even for the lightest ion, i.e. a hydrogen ion (proton), M is ca. 1836 times larger
than m. Hence, the velocity of a proton with a kinetic energy of 1 eV is about 1.38× 104 m s−1.
Kinetic energy analyses (Velocity analyses) of electrons or ions ejected from sample materials are
useful for studying their structures and masses.

1.3 Waves and oscillations

A basic equation for waves was utilized to discover the fundamental equation for quantum
mechanics, which became the basis of quantum chemistry. Let us first consider basic properties
of waves.

A typical wave depending on the position x and time t is expressed as the following sine wave.

Ψ(x, t) = A sin 2π
(
x

λ
− t

T

)
(1.2)

Here, Ψ is a quantity indicating the displacement at the position x and time t, A is the amplitude,
T is the frequency, λ is the wave length, and 2π (x/λ− t/T ) is the phase of the wave. Time-
development of this wave (Fig.2a) can be understood easily by considering the behavior at a given
point, for example at x = 0. This wave oscillates in the range between ±A, and its frequency per
second is expressed as

ν =
1
T

(1.3)
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Figure 1.2: Sine waves

The unit for the frequency is s−1 or Hz (Hertz). The motion of the wave in the coordinate space
at a given time (for example at t = 0) is shown in Fig.2b, in which periodic behavior of the wave
can be seen with an interval of the wavelength λ. Considering a peak of the wave which should
satisfy Ψ = A in eq.(2), we obtain

2π
(
x

λ
− t

T

)
=
π

2
Thus, the value for x with this condition is given by

x(t) = λ

(
t

T
+

1
4

)

The x-coordinate for the peak of the wave increases as function of time t as can be seen in Fig.2c.
Therefore, this wave proceeds toward the positive direction along the x-axis. Since its velocity v
is expressed as v = dx/dt, we obtain

v =
λ

T
(1.4)

Using eq.(3), we obtain
v = νλ (1.5)
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This is the fundamental equation for a wave. A wave with a wavelength λ oscillating ν times
per second reaches a position in a distance of νλ, which is the velocity of this wave. As for
electromagnetic waves or light, the velocity v becomes the light velocity c, and we obtain

c = νλ (1.6)

This is the fundamental equation of electromagnetic waves.
A mathematical relation for a complex number with an angle θ,

exp(iθ) = cos θ + i sin θ (1.7)

can be used to extend a wave with a frequency ν and wavelength λ to a wave expressed by an
exponential function with a complex value. Using eq.7 as well as θ = 2π(x/λ−t/T ) = 2π(x/λ−νt),
we obtain an equation for Ψ = A exp(iθ).

Ψ(x, t) = A exp 2πi
(x
λ
− νt

)
(1.8)

This equation will be used later for introducing the fundamental equation of quantum mechanics.

Example 1.4 A carbon dioxide molecule absorbs infrared radiation with a wave number of
667 cm−1 (wave number is defined as the number of waves per unit length of 1 cm). Calculate the
wavelength and the frequency of this wave.

(Solution) Using relations λσ = 1 and λν = c among wave number σ, wavelength λ, frequency

Figure 1.3: Classification of electromagnetic waves
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ν, and light velocity c, we obtain λ = 1/σ and ν = cσ. In the case of infrared radiation1 with a
wave number of 667 cm−1,

λ =
1

667 cm−1
= 1.50× 10−3 cm = 15.0µm = 1.50× 10−5 m

ν = (3.00× 108 m s−1)× (66700 m−1) = 2.00× 1013 s−1

1.4 Quantum theory of energy

The concept of matter being composed of small elements has been established by the discovery
of atoms, electrons, and nuclei. Further studies on thermal radiation and photoelectric effects
have revealed the indivisible minimum unit of energy called an energy quantum.

The phenomenon of light (electromagnetic wave) emission from matter heated to a high temper-
ature, such as iron in a furnace or a heater in an electric stove, is called thermal radiation. Thermal
radiation from a completely black body is an ideal case that does not include reflection and is
called black-body-radiation. Spectroscopic measurements of intensities of emitted electromagnetic
waves as functions of wavelength λ or frequency ν give characteristic features of the spectra. The
spectra for black-body-radiation shows a characteristic shape at a given temperature, and their
features change depending on the temperature, as can be seen in Fig.1.4.

Figure 1.4: Spectra of black body radiation

The wavelength at the maximum λmax shifts toward shorter wavelengths upon increasing abso-
lute temperature T . The product of λmax and T becomes approximately constant.

λmaxT = constant (1.9)

This is Wien’s displacement law.
In the several years starting from the end of the nineteenth century to the beginning of the

twentieth century, no theoretical explanations of thermal radiation were successful, though some
trials were made on the basis of physical laws known before. Thus, physicists in those years
became deeply perplexed. In 1900, Planck successfully introduced the new concept of an energy
quantum, which yielded a satisfactory formula for thermal radiation. Planck’s theory includes an
elementary unit of energy proportional to the frequency ν for every oscillator, and the allowed

1Typical wavelengths for infrared radiation are 1 ∼ 100µm (1µm = 10−6m). Relationship between wavelengths
or wave numbers and photon energies can be seen in Fig.1.3.
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energy of an oscillator is assumed to be an integer multiple of the frequency ν, nhν. This minimum
unit of energy hν is called the energy quantum, and h is called Planck constant. The experimental
value of h is h = 6.6262× 10−34 Js.

Example 1.5 The maximum wavelength of thermal radiation from a crystalline plate of gallium
arsenide (GaAs) heated in a vacuum chamber for production of semiconductor was 5.0µm at
308 ◦C. Calculate the maximum wavelength when the plate is heated at 400 ◦C.

(Solution) Wien’s displacement law gives a value of the product of the maximum wavelength λmax

and the absolute temperature T as

λmaxT = (5.0µm)(308 + 273 K) = 2905µm K

Thus, we obtain the maximum wavelength λmax at 400 ◦C as follows.

λmax =
2905µm K

400 + 273 K
= 4.3µm = 4.3× 10−6 m

The concept of the energy quantum was applied to the explanation of the photoelectric effect
by Einstein, and the minimum unit of energy hν for a light of frequency ν was then called a light
quantum or a photon.

The photoelectric effect is a phenomenon where an electron is ejected from matter illuminated
by light, which is associated with consumption of light energy. The ejected electron is called a
photoelectron. Photoelectric currents of a photoelectric tube produced by irradiating the surface
of the cathode were extensively studied by Lenard (Fig.1.5), and interesting features were revealed
for the photoelectric effects.

Figure 1.5: The relationship between the photocurrent and the retarding voltage in the photo-
electric effect

(1) There is a threshold wavelength λt. Regardless of how strong the light intensity, when
the wavelength is longer than the threshold value, no photoelectric effect can be observed
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(Fig.1.6a-b). Threshold wavelengths(λt orλt′) are different depending on the materials of
the cathode (Fig.1.6a), andλt for an alkali metal is at a longer wavelength in comparison
with other materials.

(2) A photoelectric current is observed at the instant just after light is introduced, even if the
intensity of the light is very weak (Fig.1.6c). The photoelectric current, i, is proportional to
the light intensity, I (Fig.1.6b).

(3) When a stopping voltage V is applied between the anode and the cathode so that the
photoelectron ejected from the cathode may be repelled before reaching the anode, the
photoelectric current becomes vanishing at a certain voltage of Vmax (maximum stopping
voltage). Vmax corresponds to the maximum value of the kinetic energies of the photoelec-
trons, {(1/2)mv2}max = Vmax. The maximum stopping voltage does not change even if
the intensity of the light introduced onto the cathode is increased. The maximum stopping
voltage depends on the kind of material, and the shorter the wavelength (or the larger the
frequency), the larger it becomes (Fig.1.6d).

Figure 1.6: Observed features of the photoelectric effect

These experimental features of the photoelectric effect could not be explained in terms of naive
ideas that electrons in matter would be ejected under the disturbing actions of electromagnetic
waves. For example, the general tendency for the action of electromagnetic waves to increase
with the increase of their intensity clearly contradicts feature (1). Since low intensity light has
insufficient energy to kick out an electron, a certain time would be required for ejection of a
photoelectron after irradiation, and hence this is not consistent with feature (2). On the other
hand, intense light would seem to increase the velocity of the photoelectron in contradiction to
feature (3).

In 1905 Einstein showed that the photoelectric effect can be explained consistently in terms of
the law of conservation of energy, as a photon energy of hν is consumed to generate a photoelectron.
Since a certain amount of work W is required for extracting an electron from matter, the energy of
an electron in matter Ein (Ein < 0) should be −W , provided that the energy of a resting electron
free from external forces is set to be 0.

Ein = −W (1.10)
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The magnitude of W (W > 0) depends on the kind of the substance. W is called a work function
for a metal, and it corresponds to ionization energy or ionization potential when the substance
ejecting an electron is an atom or a molecule. The kinetic energy of an ejected photoelectron with
a mass m and a velocity v is expressed as 1

2mv
2. When an electron in the state of Ein = −W

is given a photon energy hν to be ejected as an photoelectron, the law of conservation of energy
leads to the following equation.

hν −W =
1
2
mv2 (1.11)

The left-hand side of this equation is the sum of energies for a photon and an electron, and the
right side corresponds to the state of an outgoing photoelectron after the consumption of a photon.
The kinetic energy of the photoelectron in the right side of Eq.(11) is positive, and thus hν ≥W .
By using a relation for light velocity c with frequency ν and wavelength λ,we obtain

λ ≤ hc

W
(1.12)

This explains the reason why the photoelectric effect cannot occur unless the wavelength is shorter
than the threshold value of λt = hc/W .

As indicated in Table 1.1, the work function W is a characteristic quantity of the matter. It
is therefore reasonable that the threshold wavelength varies depending on the individual matter.
Since a photoelectron is produced at the expense of a photon, the photoelectron is ejected on
the instant even if the light intensity is low, and the larger the number of photons becomes with
intense light, the larger the photoelectric current becomes with the increase of the photoelectrons.
The equation for the energy conservation, eVmax = hν −W , explains the experimental facts in
Fig.1.6d. Thus, the light with a frequency ν became understood to behave as photons like particles
with a characteristic energy of hν.

Example 1.6. The threshold wavelength for a copper plate was determined to be 255 nm in an
experiment of the photoelectric effect. Obtain the work function of copper in units of J or eV.

(Solution) The formula for the photoelectric effect leads to the following relationship between the
work function W and the threshold wavelength λt.

λt =
hc

W

Thus,

W =
hc

λt
=

(6.63× 10−34 J s)(3.00× 108 m s−1)
255× 10−9 m

= 7.45× 10−19 J · · · (answer in units of J)

=
7.45× 10−19 J

1.602× 10−19 J eV−1

= 4.65 eV · · · (answer in units of eV)

1.5 Atomic spectra and energy levels

In the middle of the nineteenth century, studies of spectra of light emitted from flame and gas
discharges have revealed atomic spectra characteristic of the chemical element. At the early stage
of the twentieth century, studies of internal structures of atoms have developed to elucidate the
mechanism of characteristic atomic spectra.

A gaseous discharge of hydrogen gives brilliant lines of the atomic spectrum of the hydrogen
atom with a series of four wavelengths in the visible region(400 ∼ 800 nm); the wavelength values
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Table 1.1: The work functions W for various metals
Metal Work function/eV Metal Work function/eV

cesium Cs 1.95 aluminum Al 4.28
potassium K 2.28 tin Sn 4.42
sodium Na 2.36 iron Fe 4.5
calcium Ca 2.9 tungsten W 4.6
zinc Zn 3.63 copper Cu 4.65
magnesium Mg 3.66 gold Au 5.1
lead Pb 4.25 nickel Ni 5.15
silver Ag 4.26 platinum Pt 5.64

Table 1.2: The spectral line series of the hydrogen atom (wavelength in nm)
series m n wavelength for n = m+ 1 wavelength for n→∞

Lyman 1 2,3,4,· · · 121.6 91.18
Balmer 2 3,4,5,· · · 656.5 364.7
Paschen 3 4,5,6,· · · 1876 820.6
Brackett 4 5,6,7,· · · 4052 1459
Pfund 5 6,7,8,· · · 7460 2279

corrected to the vacuum are λ1 = 656.47 nm, λ2 = 486.28 nm, λ3 = 434.17 nm, λ4 = 410.29 nm.
In 1885 Balmer discovered the following formula (Balmer’s formula), which fits the wavelengths
of the brilliant lines.

λk =
a(k + 2)2

(k + 2)2 − 4
(a = 364.7 nm) (1.13)

Here, λkis the wavelength of the k-th line for k = 1 ∼ 4 in the visible spectrum, and lines for
k = 5 can also be observed in the ultraviolet region. A series of spectral lines corresponding to
eq.(1.13) is called the Balmer series, which converge to a = 364.7 nm when k → ∞. Some other
series (Table 1.2) were also observed in the infrared and ultraviolet regions. These series were
found commonly to fit in with the following formula (Rydberg’s formula).

1
λ

=
R

m2
− R

n2
(1.14)

Here, m and n are positive integers, which should be assigned to a particular spectral line, and R
is the Rydberg constant. Rydberg’s formula can be applied not only to emission spectra but also
to absorption spectra, which are observed as the loss of light intensity after passing through the
sample.

Example 1.7 Using Balmer’s formula with its constant a = 364.7 nm in comparison with Ryd-
berg’s formula, obtain the Rydberg constant R.

(Solution) Transforming eq.(1.14) into a form similar to eq.(1.13), we obtain

λ =
1
R
· n

2 ·m2

n2 −m2

A comparison of this equation with eq.(1.13) leads to n = 2, m = k + 2, and

a =
n2

R
=

4
R

Thus, we obtain

R =
4
a

=
4

364.7× 10−9 m
= 1.097× 107 m−1



CHAPTER 1. QUANTUM THEORY AND THE WAVE EQUATION 13

Let us consider the significance of Rydberg’s formula based on the quantum theory by Planck
and Einstein. The essence of absorption or emission of light (electromagnetic wave) is a process
of taking or giving photons hν, in which the law of conservation of energy is considered to hold.
Multiplying both sides of eq.(1.14) by hc and using a relation of c = νλ, the photon energy hν
upon light absorption or emission can be expressed as a difference of two terms as follows.

hν =
Rhc

m2
− Rhc

n2
(1.15)

In connection with the interpretation of the photoelectric effect that the energy balance of an
electron equals to hν, each term in the right hand side of eq.(1.15) is suggested to correspond to
the energy of the electronic state before or after the light absorption or emission. Since the energy
of an electron captured in matter is negative as in the case of eq.(1.10), a formula for the energy
level of an electron in hydrogen atom can be obtained as follows,

En = −Rhc
n2

(1.16)

where n is a positive integer 1, 2, 3, · · · . By using this formula for the energy levels, eq.(1.15) can
be generalized in the following form with an assumption of En > Em.

hν = En − Em or Em + hν = En (1.17)

As shown by arrows in Fig.1.7, upon light absorption an electron steps up from the lower level
to the higher level, and upon light emission an electron steps down from the higher level to the
lower level.

Figure 1.7: Light absorption and emission and Bohr’s frequency condition

Eq.(1.17) leads to the following equation for the frequency ν.

ν =
En − Em

h
(1.18)

This equation was first proposed by N.H.D. Bohr in 1913 and called Bohr’s frequency condition.
Now, let us consider the meaning of eq.(1.16) and Fig.1.7. The electronic state of n = 1 is the
lowest energy state and is called the ground state. Higher energy states of n ≥ 2 are called excited
states. In a state of n → ∞the electron energy becomes 0, and the electron is released from the
attractive force by the nucleus. This state corresponds to the ionic state (ionized state) in which
a proton and an electron in a hydrogen atom are separated in the infinite distance. Thus, the
ionization energy of hydrogen WH is given by the next formula.

WH = E∞ − E1 = 0− (−Rhc) = Rhc (1.19)
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Figure 1.8: Energy levels and spectra of hydrogen atom

Example1.8 Using the value of Rydberg constant R obtained in the Example 1.7, obtain the
ionization energy of hydrogen atom WH in units of J, eV, and J mol−1.

(Solution) Equation (1.19) gives WH = Rhc, and we obtain

WH = (1.097× 107 m−1)(6.626× 10−34 J s)(2.998× 108 m s−1)
= 2.179× 10−18 J

=
2.179× 10−18 J

1.602× 10−19 J eV−1 = 13.60 eV

For 1 mol,

(2.179× 10−18 J)(6.022× 1023 mol−1) = 1312 kJ mol−1

In 1911, E. Rutherford proposed a model of the atomic structure based on experimental studies
of α particles (stream of helium nuclei) scattered by metallic foil such as gold foil. In this model,
a hydrogen atom is composed of a proton and an electron moving round it.

Bohr derived a successful formula for energy levels of hydrogen atom in 1913 by introducing
new ideas into a physical system of an electron moving round a proton at a constant distance of
r. A circular motion of an electron with a velocity v around a proton at a radius of r gives the
following equation between the electric force due to Coulomb’s law and the centripetal force of
the circular motion.

e2

4πε0r2
=
mv2

r
(1.20)

Here, the left-hand side is the Coulomb force, and the right-hand side is the centripetal force. In
general, the force equals (mass)×(acceleration), according to Newton’s law of motion. In this case,
the mass is the electron mass m, and the centripetal acceleration is v2/r. Bohr assumed a quantum
condition that requires a product of momentum (mass m × velocityv) and the circumference of
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Figure 1.9: Bohr’s model

the circle (2πr) to be an integer multiple of Planck constant h.

(mv)(2πr) = nh (n = 1, 2, 3, · · · ) (1.21)

Unless this condition is fulfilled, the system cannot be in a stable stationary state. From equations
(1.20) and (1.21), the radius of the circular orbit in the stationary state is derived as follows.

r =
n2ε0h

2

πme2
= n2aB (n = 1, 2, 3, · · · ) (1.22)

Here, aB = ε0h
2/πme2 is the orbital radius in the stationary state of n = 1 and called Bohr

radius. The value of aB is 5.292 × 10−11 m, and this distance may be considered as the size of
a hydrogen atom. The total energy E of an electron is the sum of its kinetic energy mv2/2 and
its potential energy U . The potential energy U(r) of an electron under the Coulomb force in the
left-hand side of eq.(1.20) can be obtained as follows. The potential energy at the infinite distance
U(∞) is taken to be 0 as the reference energy. Then, the work required for removing the electron
from the distance r to the infinite distance against the Coulomb attraction equals U(∞)− U(r)

U(r) = U(∞)−
∫ ∞
r

e2

4πε0r2
dr =

[
e2

4πε0r

]∞

r

= − e2

4πε0r

Using eq.(1.20), the energy becomes

E =
mv2

2
− e2

4πε0r
= − e2

8πε0r

Substituting eq.(1.22) for r, we obtain a formula for the n-th energy level En as follows.

En = −me
4/8ε0

2h2

n2
(1.23)

A comparison of this equation with eq.(1.16) gives a theoretical representation of the Rydberg
constant R.

R =
me4

8ε0
2h3c

(1.24)

1.6 Particles and wave characters

According to Einstein’s idea, a photon with an energy hν (frequency ν and wavelength λ) has
a linear momentum along its propagating direction of the following magnitude p.

p =
hν

c
=
h

λ
(1.25)
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In 1923 A. H. Compton verified this idea using scattering experiments of X-rays and electrons.
Thus, the behavior of photons having a momentum h/λ together with an energy hν was revealed.
In 1923 de Broglie postulated conversely that a particle can have a wavelength corresponding to
its momentum via eq.(1.25) in which the momentum and the wavelength are related from one to
the other and vice versa. The wave behavior of electrons is called an electron wave, and in general
the wave behavior of matter is called a matter wave or de Broglie wave. The wavelength λ for a
matter wave is given by the following equation, which is equivalent to eq.(1.25).

λ =
h

p
(1.26)

This relationship is called de Broglie relation.

Example 1.9 Calculate the wavelength of the electron beam given by acceleration of electrons
from 0 V to 150 V.

(Solution) The kinetic energy E is an energy gained through acceleration by the potential difference
that is the applied voltage of 150 V.

E = 150 eV = (150 eV)(1.602× 10−19 J eV−1) = 2.403× 10−17 J

In general there are the following equations for the electron mass m, velocity v, momentum p, and
kinetic energy E.

E =
1
2
mv2, p = mv

Using the de Broglie relation λ = h/p, we obtain

λ =
h

mv
= h(2mE)−1/2

= (6.626× 10−34 J s)(2× (9.109× 10−31 kg)(2.403× 10−17 J))−1/2

= 1.00× 10−10 m

(A useful formula to obtain the wavelength λ of an electron wave with a kinetic energy of Z eV
is given as λ =

√
150/Z × 10−10 m) Beautiful spots as shown in Fig.1.10 were observed by M. T.

F. Laue in 1912, when X-rays were irradiated on a crystal. This demonstrates the diffraction of
X-rays that behave as electromagnetic waves. X-rays reflected by regular arrays of atoms with a
spacing d (Fig.1.11) are enhanced, if the following condition is fulfilled.

Figure 1.10: Laue spots of calcium carbonate (provided by Rigaku Denki)
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2d sin θ = nλ (n = 1, 2, 3, · · · ) (1.27)

This is called the Bragg condition of reflection (Bragg’s law), and n is called the order of reflection.

Figure 1.11: X-ray diffraction by crystal lattice

Similarly, electron waves were experimentally confirmed to produce diffraction phenomena with
regular arrays of atoms in crystals by C. J. Davisson and L. H. Germer in 1925 and also by G.
P. Thomson in 1927. A typical pattern of electron diffraction is shown in Fig.1.12. The spatially
inhomogeneous distribution created by the interference of electron waves is closely related with
the production and destruction of chemical bonding.

Figure 1.12: Electron diffraction pattern of gold polycrystals
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1.7 Wave equations

In 1926 fundamental equations inclusively describing both particle and wave characteristics
were proposed in terms of wave mechanics by Schrödinger and matrix mechanics by Heisenberg.
Though their mathematical forms were different, these theories were proved to be equivalent in
their physical significance by E. Schrödinger. In this textbook, the fundamental equation for
quantum mechanics is treated in terms of wave mechanics.

As we have already studied in section 1.3, a typical example for waves with a frequency ν and
a wavelength λ is represented by

Ψ(x, t) = Ae2πi( xλ−νt)

Using a formula for differentiation of an exponential function (deax/dx = aeax), derivatives with
respect to time t or position x lead to the following equations, respectively.

∂Ψ
∂t

= −i(2πν)Ψ

∂Ψ
∂x

= i

(
2π
λ

)
Ψ

It should be noted that the partial differentiation symbol ∂ is used in place of d when numbers
of variables are more than one. Using the equations connecting particle and wave characteristics,
E = hν and p = h/λ, we obtain the following simultaneous differential equations that do not
include ν and λ explicitly.

i~
∂Ψ
∂t

= EΨ (1.28)

−i~∂Ψ
∂x

= pΨ (1.29)

Here, ~ is a constant denoting (h/2π). Equations (1.28) and (1.29) connect particle quantities E
and p with a wave function Ψ. Let us study the mathematical properties of these equations before
applying them to some systems. The equation (1.28) shows that the operation of i~∂/∂t on Ψ
from the left is equivalent to a simple multiplication of Ψ by the energy E. The equation (1.29)
indicates that the operation of −i~∂/∂x on Ψ from the left is equal to a simple multiplication
of Ψ by the momentum p. Mathematical operations, such as i~∂/∂t and −i~∂/∂x, are called
operators. Namely, these operators stand for the energy E and the momentum p, respectively.

i~
∂

∂t
↔ E

−i~ ∂
∂x

↔ p

In order to apply these simultaneous equations to particular problems, it is necessary to know
a relation between E and p. In classical mechanics before the birth of quantum mechanics, an
important relation between E and p was known as the Hamilton function, which represents the
energy of the system as a function of the momentum p, the position x, and time t.

E = H(p, x, t) (1.30)

With the help of the Hamilton function H, the equations (1.28) and (1.29) can be united into a
single equation. In order to do this, let us first derive a Hamilton function for a system in which
a particle of mass m moves with a kinetic energy 1

2mv
2 under a potential energy of U . Noting

that the momentum of this particle is p = mv, we obtain

H =
1
2
mv2 + U =

1
2
m
( p
m

)2

+ U =
p2

2m
+ U (1.31)

Substitution of this equation into the right side of eq.(1.28) with using eq.(1.30) leads to the
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following result.

i~
∂Ψ
∂t

=
(
p2

2m
+ U

)
Ψ =

p

2m

(
−i~ ∂

∂x

)
Ψ + UΨ

=
1

2m

(
−i~ ∂

∂x

)2

Ψ + UΨ

=
(
− ~

2

2m
∂2

∂x2
+ U

)
Ψ (1.32)

As can be seen from this example, equations (1.28) and (1.29) can be combined into one equation
when the energy E in the right side of eq.(1.28) is replaced by the corresponding Hamilton function
H in which the momentum p should be replaced by the respective operator p̂.

Ĥ = H(p̂, x, t) (1.33)

In general, replacing the momentum p in the expression of Hamilton function by the respective
operator p̂ in eq.(1.33) we obtain the quantum mechanical Hamilton function Ĥ.

Ĥ = H(p̂, x, t) (1.34)

Ĥ is called Hamilton operator or Hamiltonian. Using this operator, two equations (1.28) and
(1.29) are unified into one equation.

i~
∂Ψ
∂t

= ĤΨ (1.35)

This equation is the most fundamental equation of the quantum mechanics and is called the
Schrödinger equation after the name of the discoverer. The wave function Ψ in this equation
represents the state in which the system of matter exists. The physical significance of Ψ will be
discussed in the later sections.

Although eq.(1.35) could be derived from a simple wave function, this equation is known to
be applicable to general problems. Generalization of the Hamiltonian and the wave function in
eq.(1.35) will be studied later. Procedures for solving the wave equation and the meanings of the
solutions will also be studied in the later sections.

1.8 Wave functions and probabilities of finding particles

In the photoelectric effect, the more the light intensity (the square of the amplitude of the
electromagnetic wave) increases, the more the number of photons increases linearly. Namely, the
number of photons is proportional to the square of the amplitude. In 1926 Born generalized this
idea to propose that the square of the absolute value of the wavefunction Ψ is proportional to
the probability of finding the particle. The absolute value should be used for the general wave,
because the wave may be a complex function rather than a real function. The square of the
absolute value of the complex wave function Ψ is obtained by the following equation.

|Ψ|2 = Ψ ·Ψ∗ (1.36)

Here, Ψ∗ is the complex conjugate of Ψ, and it is given via simple replacement of every imaginary
unit i included in the mathematical expression of Ψ by −i.

Ψ∗ = Ψ(i→ −i) (1.37)

The probability of finding a particle moving along the x axis in a particular region between x and
x+dx is expressed as |Ψ(x, t)|2dx by using the wavefunction Ψ(x, t). Since the probability finding
the particle in the region from x = −∞ to x = +∞ is equal to 1, the next integral must be 1.

∫ ∞
−∞
|Ψ(x, t)|2dx = 1 (1.38)

This is the normalization condition of the wavefunction. If this condition is satisfied, the wave-
function is said to be normalized.
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When a wavefunction is a solution of eq.(1.35), any multiplication of the wavefunction by
an arbitrary constant also yields a solution of eq.(1.35). Solutions of the wave equation are
therefore arbitrary for their proportionality constants. The normalization condition removes the
arbitrariness of a real wavefunction except for its sign. In the case of a complex wavefunction,
an ambiguity of the phase factor of eiθ remains. However, the phase factor does not change the
square of the absolute value, and the physical meaning of the wavefunction is irrelevant with the
phase factor. Thus, one may choose arbitrarily the value of θ in the phase factor, for example θ
can be set equal to be 0.

Since the first derivatives of the wavefunction are related to the energy E and the momentum
p according to eqs.(1.28)-(1.29), the wavefunction representing a state with finite energy and
momentum should be continuous with respect to the time and the position. This important
characteristic of acceptable wave functions should not be disregarded, when one needs to obtain
a wavefunction by solving the wave equation.

Before closing this section, it is important to note the quantum mechanical significance of the
wavefunction.

1. The state of a system is described by the wavefunction.

2. The probability that a particle will be found at a position is proportional to the square of
the absolute value of the wavefunction.

3. The wavefunction evolves in time according to the equation

i~∂Ψ
∂t = ĤΨ.

1.9 Stationary states and eigenvalue equations

If the energy E is independent of time t, the probability of finding a particle is also independent
of t. States of this kind are called stationary states. When the energy E is a constant, irrespective
of time t, eq.(1.28) is easily integrated for t to yield the following solution.

Ψ(x, t) = ψ(x) · exp
(
−iEt
~

)
(1.39)

The symbol ψ(x) is the integration constant arising from the integration with respect to t, and
thus ψ(x) is independent of t, though it depends on the position coordinate x. Although the wave
function for the stationary state Ψ(x, t) in eq.(1.39) oscillates as a function of t, the square of the
absolute value of Ψ(x, t), that is the product Ψ(x, t) ∗Ψ(x, t), remains constant.

|Ψ(x, t)|2 = ψ(x) · exp
(
−iEt
~

)
· ψ(x)∗ · exp

(
i
Et

~

)

= ψ(x) · ψ(x)∗ = |ψ(x)|2 (1.40)

Therefore, the probability of finding a particle in the stationary state is independent of t and
calculated to be the same even if the time-independent function ψ(x) is used in place of Ψ(x, t).
Thus ψ(x) is called the wavefunction of the stationary state. Inserting Ψ(x, t) in eq.(1.39) into
the wave equation (1.35) and rearranging the formula, we obtain

(Ĥψ − Eψ) exp
(
−iEt
~

)
= 0

Thus the following equation determining the wavefunction of the stationary ψ(x) state is given.

Ĥψ = Eψ (1.41)

This is called the Schrödinger equation for stationary states or the time-independent Schrödinger
equation.
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Example 1.10 Write the time-independent Schrödinger equation for a one-dimensional har-
monic oscillator that contains a particle with a mass m moving on the x-axis under the potential
energy of U(x) = 1

2kx
2(k > 0).

(Solution) The time-independent Schrödinger equation is expressed as Ĥψ = Eψ. In this case
the motion of the particle is restricted to the x-axis, the wavefunction is a function of x and
represented as ψ = ψ(x). The Hamiltonian Ĥ of this system is obtained from the Hamilton
function H composed of the sum of the kinetic energy and the potential energy. For this system,
The momentum p of the particle leads to the kinetic energy of p2/2m and the potential energy is
1
2kx

2, and we obtain

H =
p2

2m
+

1
2
kx2

Thus the Hamiltonian Ĥ is derived by simply replacing the momentum p with the operator
p̂ = −i~∂/∂x in the expression of H. This replacement must be made twice for p2/2m, and we
obtain

1
2m

(
−i~ ∂

∂x

)2

= − ~
2

2m
∂2

∂x2

The potential energy 1
2kx

2 can be left as it is, since it does not contain the momentum p. Therefore
the Hamiltonian Ĥ is expressed as

Ĥ = − ~
2

2m
∂2

∂x2
+

1
2
kx2

Inserting this Ĥ into Ĥψ = Eψ, the time-independent Schrödinger equation for a one-dimensional
harmonic oscillator is given as

(
− ~

2

2m
∂2

∂x2
+

1
2
kx2

)
ψ(x) = Eψ(x)

note F (x) = −dU(x)/dx = −kx (k > 0) represents the force acting on the particle. A particle
in a harmonic oscillator undergoes a returning force (restoring force) proportional to its
displacement from the equilibrium and oscillates around the equilibrium position. The
displacement of an elastic body such as a spring is proportional to the applied force. This
is called Hooke’s law.

p̂ and Ĥ are operators corresponding to the momentum and the energy, respectively. An
operator F̂ corresponding to an arbitrary observable F (p, x) is introduced as F (p̂, x) by inserting
eq.(1.33) (p̂ = −i~∂/∂x in place of p) in F (p, x). The operator x̂ corresponding to a Cartesian
coordinate x is simply expressed as x̂ = x, since no momentum p is contained in x.

In general, a suitable choice of a function φ yields a F̂ φ proportional to φ and equal to a constant
multiple of φ itself.

F̂ φ = fφ (1.42)

The multiplying constant f is the eigenvalue of the operator F̂ , and the function φ is the eigen-
function of F̂ corresponding to the eigenvalue f . When some eigenfunctions (e.g. φ1 and φ2)
corresponding to the same eigenvalue f are linearly independent of each other (e.g. φ1 is not
proportional to φ2), the eigenvalue f is said to be degenerate. The number of independent eigen-
functions corresponding to the same eigenvalue is the degree of the degeneracy. The equation
(1.42) including a set of an eigenfunction φ and an eigenvalue f for the operator F̂ is called the
eigenvalue equation of F̂ . The wave equation (1.41) for stationary states (the time-independent
Schrödinger equation) is the eigenvalue equation of the Hamiltonian operator Ĥ corresponding to
the energy. The equation (1.41) gives possible sets of eigenfunctions ψ and eigenvalues E for the
energy.

In a stationary state, the energy E and the probability of finding the particle are independent
of time t. However, we should not consider that the particle rests at a certain position. Even in
a stationary state, motion of a particle is taken into account as the oscillation of the phase factor
in eq.(1.39) satisfying the time-dependent wave equation of (1.35).
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1.10 A particle in a one-dimensional box

The best way to understand procedures for solving wave equations and the significance of the
solutions is to study typical examples. Let us solve the time-independent Schrödinger equation
Ĥψ = Eψ for a particle with a mass m, which is confined in a region (0 < x < L) on the x-axis
(one-dimensional box). The Hamiltonian of this system is given by

Ĥ = − ~
2

2m
∂2

∂x2
+ U(x)

U(x) is the potential energy of the system. The limitation of the particle motion is imposed on
U(x) as follows (Fig.1.13).

Inside the box (0 < x < L) U(x) = 0
Outside the box (x ≤ 0 or x ≥ L) U(x) = +∞ (1.43)

This treatment naturally leads to no probability of finding the particle outside the box. If ψ(x) 6= 0
at U(x) = +∞, then both sides of Ĥψ = Eψ become divergent.

Figure 1.13: Potential energy U(x) for a particle in a one-dimensional box

Since U(x) = 0 inside the box, the wave equation Ĥψ = Eψ becomes a very simple form as

d2ψ

dx2
= −κ2ψ (1.44)

where

κ =
(

8π2mE

h2

)1/2

(1.45)

The general solution of eq.(1.44) is well known, and it is given by

ψ(x) = a · eiκx + b · e−iκx (1.46)

Substitution of this expression into the left side of eq.(1.44) will lead the right side.
In order to adapt ψ(x) in eq.(1.46) to the physical interpretation of the quantum theory, we

need to consider the continuous properties of wavefunctions. In this case, ψ(x) must be continuous
at both ends of the box (x = 0 and x = L). Thus, the following conditions are required.
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At an end of the box (x = 0), ψ(0) = a+ b = 0,
and at another end of the box (x = L), ψ(L) = a · eiκL + b · e−iκL = 0.
Therefore, we obtain

a = −b (1.47)
a(eiκL − e−iκL) = 0 (1.48)

Since the possible values for the energy eigenvalue E are not apparent, we must classify the
possible cases as follows.
1) (E < 0)

From eq.(1.45) κ is a pure imaginary number, and hence the parenthesis in the left of eq.(1.48)
cannot be equal to 0. This leads to a + b = 0, and then ψ(x) = a eiκx + b e−iκx = 0 for all
x(0 < x < L). Clearly this is not consistent with our assumption of a particle in a box.
2) (E = 0)

From eq.(1.45) κ = 0 and ψ(x) = a + b = 0 for all x(0 < x < L). This is also incompatible
with the assumption of a particle in a box.
3) (E > 0)

In this case κ > 0, and hence the parenthesis in the left of eq.(1.48) can be equal to 0. This
condition is

eiκL = e−iκL or e2iκL = 1 (1.49)

It should be noted that e2kπi = 1 for an arbitrary integer k. Thus the possible values for κ(κ > 0)
should satisfy the following condition.

κL = nπ (n = 1, 2, 3, · · · ) (1.50)

Inserting this κ into eq.(1.45), we obtain the possible values for the energy E with an integer n.

En =
n2h2

8mL2
(1.51)

This is the formula of the energy levels for a one-dimensional particle in a box. For any energies
other than the special values in eq.(1.51) there are no solutions. The appearance of discrete levels
is a consequence of quantization of energy. Quantized energy levels are classified with the positive
integer n. These numbers representing quantized states are said to be quantum numbers.

The wavefunction corresponding to the energy level En, can be determined from equations
(1.46), (1.47), and (1.50).

Outside the box (x < 0 or x > L) ψn(x) = 0
Inside the box (0 < x < L) ψn(x) = a(eiκx − e−iκx) = 2ai sinκx = c sin(nπx/L)

Here, the formula eiθ = cos θ+ i sin θ is used, and 2ai is denoted as c. The value of c is determined
by the normalization condition.

∫ ∞
−∞
|ψ|2dx = |c|2

∫ L

0

sin2
(nπx
L

)
dx = 1

The value of the last integral is L/2, and c2 · (L/2) = 1. Thus, c =
√

2/L, and we obtain the
solution within the box.

ψn(x) =

√
2
L

sin
(nπx
L

)
(n = 1, 2, 3, · · · ) (1.52)

The energy levels En and the wavefunctions ψn(x) for a particle in a one-dimensional box with a
length L are shown in Fig.1.14.

The lowest energy state with the quantum number n = 1 is the ground state of a particle in
a box. The probability finding the particle is largest at the middle of the box and decreases on
going to both ends. In the macroscopic world, we can place a particle at any place in a box. On
the other hand in the quantum world, only probabilities can be determined. It is very strange
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Figure 1.14: The energy levels En = n2h2/8mL2 and the wavefunctions ψn(x) for a particle in a
one-dimensional box

that the ground-state energy E1 = h2/8mL2 > 0 is larger than the given potential energy of
U = 0. In a macroscopic system, the minimum energy state of a particle is a state with no motion
and the energy equal to the minimum potential energy Umin (in this case Umin = 0). The fact
that E1 − Umin > 0 indicates that a particle can move with the energy of E1 − Umin, even at the
absolute zero temperature where no energy can be removed from the system any more. Therefore,
the energy of E1 − Umin is called the zero-point energy, and the motion in the ground state is
called the zero-point motion. In the macroscopic world, the mass m of the matter and the length
L of the box are very large, and hence E1 = h2/8mL2 can be disregarded as negligibly small. It
follows that zero-point energies and zero-point motion can be neglected for macroscopic systems.
Definite discrete values are only allowed for excited-state energies of a particle in a box by contrast
with a particle in the macroscopic world for which any energy values can be allowed. Energy levels
for a macroscopic system can be considered as continuous because of very large m and L. As can
be seen from wave functions shown in Fig.1.14, there are some positions with no probability of
finding a particle in an excited state, even though the particle moves in the box. The geometrical
position where ψ = 0 is said to be a node. The number of nodes in the box is n−1, which increases
with the increase of the quantum number n. Waves with more nodes generally have more energy.
This propensity should be noted, and it will be helpful for understanding the nature of electron
waves moving in matter.

Example 1.11 Show the following relation between wavefunctions ψn(x) and ψm(x) for a par-
ticle in a one-dimensional box.

∫ ∞
−∞

ψn(x)∗ψm(x)dx = δnm

δnm is Kronecker’s delta, which equals to 1 for n = m and 0 for n 6= m.
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(Solution) The wavefunction with a quantum number n for a box (0 < x < L) with a length L, is
given by

ψn(x) =

√
2
L

sin
(nπx
L

)
(n = 1, 2, 3, · · · )

For the outside of the box ψn(x) = 0. Let us denote the integral of this problem as Inm.

Inm =
∫ ∞
−∞

ψn(x)∗ψm(x)dx =
∫ L

0

(
2
L

)
sin
(nπx
L

)
sin
(mπx

L

)
dx

The additivity formula for trigonometrical functions

cos(A±B) = cosA cosB ∓ sinA sinB

leads to
sinA sinB =

1
2

(cos(A−B)− cos(A+B))

Thus
Inm = I(−)− I(+)

Here

I(±) =
(

1
L

)∫ L

0

cos
(

(n±m)πx
L

)
dx

Introducing θ = πx/L and using dθ = (π/L)dx, we obtain

I(±) =
1
π

∫ π

0

cos{(n±m)θ}dθ

When (n±m) is not equal to 0,

I(±) =
[

1
π

{
1

n±m
}

sin(n±m)θ
]π

0

= 0

When n = m (n−m = 0),

I(−) =
1
π

∫ π

0

dθ =
π

π
= 1

Therefore,
(1) for n = m, Inm = 1− 0 = 1 and
(2) for n 6= m, Inm = 0− 0 = 0 Using Kronecker’s delta, we obtain Inm = δnm

The integral of this example for n = m is the normalization condition, provided that the
wavefunction has already been normalized. For n 6= m the integral is 0, where two wavefunctions
are said to be mutually orthogonal and to obey the orthogonality. The orthogonality holds in
general between arbitrary wavefunctions corresponding to different eigenvalues. When functions
are normalized for themselves and mutually orthogonal, such a set of functions is said to be
orthonormal and to obey orthonormality.

1.11 Generalization of the wave equation

Now, let us extend the simple wave equation for a particle in a one-dimensional space to the
more general case.
(a) Extension to the three-dimension

The extension from one-dimension to three-dimensions requires three coordinates x, y, and z in
place of only one variable of x. It follows that the wavefunction is denoted as Ψ(x, y, z, t) in place
of Ψ(x, t). Accordingly the velocity v and the momentum p are denoted by vectors with three
components, (vx, vy, vz) and (px, py, pz), respectively. The replacement formula corresponding to
eq.(1.33) is extended to be as follows.
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p̂x = −i~ ∂
∂x

p̂y = −i~ ∂
∂y

(1.53)

p̂z = −i~ ∂
∂z

For a particle with a mass m in three-dimensions, the kinetic energy needed to produce the
Hamiltonian operator is expressed as follows.

p2

2m
=

1
2m

(px2 + py
2 + pz

2) = − ~
2

2m
∆

Here, ∆ is an operator called the Laplacian. Its expression for one-dimension is

∆ =
∂2

∂x2

and for three-dimensions

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

With the Laplacian symbol ∆, the Hamiltonian for one particle with a mass m can be written,
irrespective of the dimension, in the same expression as

Ĥ = − ~
2

2m
∆ + U (1.54)

It should be noted that the potential energy U for one-dimension or three-dimensions is U(x) or
U(x, y, z), respectively.

The Laplacian ∆ may be replaced by ∇2 or ∇ · ∇ , where ∇ is a mathematical symbol called
nabla, which is given by the next formula.

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Thus, the Laplacian ∆ is equal to an inner product or a scalar product .

∆ = ∇ · ∇ (1.55)

Although both of these expressions may be used, ∆ is used in this book.
(b) Extension to N-particle system

The wavefunction of a system with N -particles is a function of 3N spatial coordinates
(x1, y1, z1, · · · , xN , yN , zN ) and time t, and it contains information on the probability of finding
the particles. It is convenient to use a symbol q in place of the 3N variables. The wavefunction
Ψ(q, t) for an N -particle system satisfies the same wave equation as the one-particle wavefunction.

i~
∂Ψ
∂t

= ĤΨ (1.56)

A possible state that happens in the real world is only limited to Ψ satisfying this equation
and is called an eigenstate. The probability of finding each particle in a volume of dxidyidzi
corresponding to a particular region of xi ∼ xi + dxi,yi ∼ yi + dyi, zi ∼ zi + dzi is given for the
eigenstate Ψ by

|Ψ(q, t)|2dq (1.57)

The integration of eq.(1.57) over the entire region of 3N dimensional space should be equal to 1,
since it is the total summation of the probabilities (normalization condition).

∫
|Ψ(q, t)|2dq = 1 (1.58)
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Here,
dq = dx1dy1dz1 · · · dxNdyNdzN (1.59)

represents the volume element of 3N -dimension, and the corresponding integration should be taken
for all of the 3N variables over the entire space. The integral in eq.(1.58) is simply expressed with
a single

∫
in stead of using 3N

∫
, corresponding to the abbreviation for the volume element dq.

The range of the integration for each variable xi, yi, or zi is from −∞ to ∞.
Ĥ in eq.(1.56) is the Hamiltonian operator for an N -particle system, which can be easily con-

structed from a classical energy expression of the Hamilton function H(p, q, t) by using the fol-
lowing replacement formula for p̂ in place of the momentum p.

p̂ = −i~ ∂
∂q

(1.60)

Thus,
Ĥ = H(p̂, q, t) (1.61)

For a stationary state in which H(p, q, t) = E (a constant at any time t),

Ψ(q, t) = ψ(q) exp
(
−iEt
~

)
(1.62)

|Ψ(q, t)|2 = |ψ(q)|2 (1.63)

The wavefunction for a stationary state ψ(q) satisfies

Ĥψ = Eψ (1.64)

The normalization condition for ψ(q) is
∫
|ψ(q)|2dq = 1 (1.65)

1.12 The motion in two-particle systems

Many particles need to be considered in general for the application of the wave equation to
chemical problems. In order to see an outlook of the application to molecular systems, let us first
deal with two-particle systems. Problems in two-particle systems can be reduced to one-particle
problems, when the relative motion and the motion of the center of gravity are separated.
(a) Separation of the relative motion from the translation

Let us suppose that the energy of two particles E is expressed as a sum of kinetic energies E1

and E2 for the particles and the potential energy U ,

E = E1 + E2 + U (1.66)

where

E1 =
1
2
m1V2

1

E2 =
1
2
m2V2

2

and mi, Vi are the mass and the velocity of the i-th particle (i = 1 or 2), respectively. Coordinates
for the center of gravity (X, Y, Z) are related to coordinates for each particle (xi, yi, zi).

X =
m1x1 +m2x2

m1 +m2

Y =
m1y1 +m2y2

m1 +m2
(1.67)

Z =
m1z1 +m2z2

m1 +m2
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Since the particle velocity Vi is a vector composed of time-derivatives of the Cartesian coordinates
for the particle, the velocity for the center of gravity VG is represented with the particle velocities.

VG =
m1V1 +m2V2

m1 +m2

The relative coordinates can be introduced as the positions of the second particle with respect to
the first particle

x = x2 − x1

y = y2 − y1

z = z2 − z1

(1.68)

The relative velocity V, which is defined as the time-derivative of the relative position, is given
by

V = V2 −V1 (1.69)

The motion of the center of gravity, which is independent of the relative motion between the
particles, corresponds to parallel motion keeping relative geometries between the particles and is
called the translational motion or translation.

The energy of the two-particle system is expressed as the sum of energies for the relative motion
and the translation.

E =
1
2

(m1 +m2)VG
2 +

1
2
µV2 + U (1.70)

The first term represents the kinetic energy of the translation, and the second term represents
the kinetic energy of the relative motion, where µ is the reduced mass defined by the following
formula.

µ =
1

1/m1 + 1/m2
(1.71)

Since we may choose an arbitrary coordinate system, the motion of two-particle systems with
respect to coordinates fixed at the center of gravity can be simply expressed as

E =
1
2
µV2 + U (1.72)

where V = 0. This is the energy of a particle with a mass µ and a velocity V moving under
the potential energy U . Therefore, the motion of a two-particle system is reduced to that of one
particle with a reduced mass µ. Thus, the corresponding Hamiltonian of the relative motion of
this system is represented with a Laplacian ∆ as

Ĥ = − ~
2

2µ
∆ + U (1.73)

Figure 1.15: Relative motion of two-particle systems (a) Rotational motion with a fixed r (b)
Vibrational motion

(b) Separation of rotation and vibration
The relative motion of two-particle systems can be divided into rotation and vibration. The

rotational motion can be imagined by the rotation of a dumbbell. A prototype of the vibrational
motion is the vibration of two balls connected with a spring, as shown in Fig.1.15. Angles are
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suitable variables for rotation. Let us transform Cartesian coordinates into polar coordinates
using (r, θ, φ) in three-dimension, as shown in Fig.1.16.

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

(1.74)

r is the distance from the origin of the coordinates and said to be the radial distance. θ is the
angle of the inclination from the z-axis and said to be the polar angle. φ is the angle around the
z-axis and said to be the azimuthal angle. The spatial orientation is specified by the two angles
θ and φ. In the polar coordinate system, variations in the angles (θ, φ) and the distance (r)
represent rotational and vibrational motion, respectively. In the Cartesian coordinate, rotation
and vibration cannot be separated.

Figure 1.16: The polar coordinates

(c) Wave equation in the polar coordinates
The Laplacian for the relative motion of a two-particle system is given by

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

Λ (1.75)

Λ is an operator for angles and is known as the Legendrian.

Λ =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2
(1.76)

By using these equations, the Hamiltonian for the relative motion is written as

Ĥ = − ~2

2µr2

(
∂

∂r

(
r2 ∂

∂r

)
+ Λ

)
+ U (1.77)

This Hamiltonian can be applied to important problems in chemistry. Let us see some typical
examples of the wave equations, their energy eigenvalues, and wavefunctions.

(1) Reduced mass and energy levels of a hydrogen atom
A typical example is a hydrogen atom, which is a two-particle system of a proton and an

electron. Equation (1.71) leads to the reduced mass for this system with the proton mass of M
and the electron mass m as follows.

µ =
1

1/M + 1/m
(1.78)

Since m/M is as small as about 1/1836, 1/M is negligibly small in comparison with 1/m in the
denominator of the eq.(78). With this approximation, µ = m, and hence the Hamiltonian in
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eq.(1.73) is clearly the same as that for the electronic motion in a hydrogen atom with the fixed
nucleus (Bohr’s model). Rigorously, the reduced mass µ should be used without using m in the
approximation of M → ∞. Much better agreement with observed spectra will be obtained in
Bohr’s model, if we use µ in place of m.

When eq.(1.77) is used, energy eigenvalues satisfying Ĥψ = Eψ become equal to those for
Bohr’s model using µ in place of m, and they are given as

En = −WH

n2
(n = 1, 2, 3, · · · ) (1.79)

WH =
µe4

8ε0h2
(1.80)

WH is the ionization energy of a hydrogen atom. The rigorous Rydberg constant R using the
reduced mass µ is expressed as follows.

R =
WH

hc
=

µe4

8ε0h3c
(1.81)

This expression reduces to eq.(1.24) for Bohr’s model, when we use µ = m in the approximation
of M →∞. On account of this reason, the Rydberg constant for the case of M →∞ is sometimes
denoted as R∞.

(2) Molecular rotation of a diatomic molecule
The Hamiltonian in eq.(1.77) can be applied to molecular rotation of a diatomic molecule, which

is the rotational motion around an axis passing through the center of gravity. The distance r of
the bonded atoms, which is called the bond length, can be fixed at its equilibrium value, and we
neglect external forces. Then, the Hamiltonian for the rotational motion of a diatomic molecule
is expressed as

Ĥ = −~
2

2I
Λ (1.82)

I is the moment of inertia and given by
I = µr2 (1.83)

The reduced mass in this case is the same as eq.(1.71) for mass of two particles, m1 and m2.
Equation (1.82) can be applied to a circular motion of a particle with mass µ attached at one end
of a hard stick of length r, which is fixed at the other end to the origin of the coordinates. This
circular motion of the particle is restricted to the surface of the sphere. This kind of a rotational
system is called a rigid rotor. Stationary states of such a rigid rotor or the molecular rotation are
described by wavefunctions of two angles θ and φ.

Figure 1.17: The rotational energy levels (a) and the rotational spectrum (b). The rotational
constant, B = h

8π2µr2 . The selection rule for rotational transitions, ∆J = ±1.

By solving Ĥψ = Eψ with eq.(1.82), energy levels are obtained as follows (Fig. 1.17).

EJ =
~2

2I
J(J + 1) (J = 0, 1, 2, 3, · · · ) (1.84)
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Here, J is the rotational quantum number. The formula for rotational energy levels can be applied
to molecular rotations of diatomic molecules. Photons corresponding to the energy difference
between the J-th and (J + 1)-th energy levels, which is expressed as ∆E in eq.(1.85), can be
absorbed or emitted to yield molecular rotational spectra.

∆E = EJ+1 − EJ = (J + 1)
~2

I
= 2(J + 1)hB (1.85)

Transitions among rotational levels are called rotational transitions. B in eq.(1.85) is the rotational
constant, which is defined by the following equation.

B =
h

8π2µr2
(1.86)

Associated with the increase of J=0,1,2,3, the corresponding energies of the rotational transitions
expressed as ∆E in eq.(1.85) increase with a constant spacing of (~2/I). In many cases, rotational
spectra of molecules appear in the microwave or far infrared regions. When the moment of inertia
I is obtained from observed spectra, the bond length r can be determined from eq.(1.83) given
the value of the reduced mass. Though analyses become complicated, geometrical structures of
polyatomic molecules can also be determined from rotational spectra. Electromagnetic waves
from interstellar media in the universe contain those emitted as molecular rotational spectra.
Rotational transition probabilities depend on the electric polarization of the molecule. Rotational
transitions cannot occur for nitrogen and hydrogen molecules, since these molecules have no
electric polarization.

(3) Molecular vibration of a diatomic molecule
The Hamiltonian in eq.(1.77) can also be applied to the molecular vibration of a diatomic

molecule, which is the stretching motion of the bond-length r around its equilibrium distance of
re. Fixing the rotational angles θ and φ, the Hamiltonian for the vibrational motion of a diatomic
molecule is expressed as

Ĥ = − ~2

2µr2

∂

∂r

(
r2 ∂

∂r

)
+ U(r) (1.87)

Since the wavefunction ψ(r) is a function of r satisfying Ĥψ = Eψ, we can write ψ(r) using a
function φ(r) as follows.

ψ(r) =
φ(r)
r

(1.88)

Then, we obtain from the eq.(1.87) the following equation.
(
− ~

2

2µ
· ∂

2

∂r2
+ U(r)

)
φ(r) = Eφ(r) (1.89)

For vibrational motion according to Hooke’s law, the potential energy U is proportional to the
square of the displacement Q from the equilibrium position (fig.1.18), and it is given by

U =
1
2
kQ2 (1.90)

Here, k is a constant related to the strength of the spring, which is called the force constant.
The displacement Q is given by the difference between the bond length r and its equilibrium value
re.

Q = r − re (1.91)

Using the displacement Q as the variable, the wave equation for the vibrational motion of a
diatomic molecule is expressed as follows.

(
− ~

2

2µ
· ∂

2

∂Q2
+

1
2
kQ2

)
φ(Q) = Eφ(Q) (1.92)

By solving this equation, energy levels for one-dimensional harmonic oscillator are given by the
following equation (fig.1.18).

Ev =
(
v +

1
2

)
hν (v = 0, 1, 2, 3, · · · ) (1.93)
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Figure 1.18: Potential energy U = 1
2kQ

2 as well as energy levels and wavefunctions for a one-
dimensional harmonic oscillator

Here, v is the vibrational quantum number, and ν is the fundamental frequency of the vibrational
motion, which is given by the following formula.

ν =
1

2π

√
k

µ
(1.94)

This frequency is equal to the fundamental frequency of a one-dimensional harmonic oscillator
with a force constant k and a reduced mass µ.

In the case of a classical harmonic oscillator, the energy of a vibrating spring may change
continuously. While for an oscillator in the quantum theory, only quantized energy values in
eq.(1.93) can be allowed. Energy levels of a harmonic oscillator are equally spaced, and the
energy spacing hν is called the energy quantum of vibration. The energy of the ground state is
E0 = 1

2hν, and this energy is one half of the energy quantum of vibration, which is called the
zero-point energy of vibration. The vibrational motion in the ground state is called the zero-point
oscillation.

As can be seen from eq.(1.94), molecular vibrations oscillate slowly for massive systems and
quickly for strongly bonded systems. Photons of the energy difference between the (v+ 1)-th and
v-th energy levels, which is expressed as ∆E in eq.(1.95), can be absorbed or emitted to yield
molecular vibrational spectra.

∆E = Ev+1 − Ev = hν (1.95)

Vibrational spectra of molecules are usually in the infrared region. Molecular vibrations asso-
ciated with changes of electric polarization tend to undergo vibrational transitions with greater
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probability. Vibrations without changes in electric polarization do not undergo vibrational tran-
sitions.

Although the details of wavefunctions for harmonic oscillators are not described here, their
general characteristics can be seen in fig.1.18. The number of nodal points in the wavefunctions
of harmonic oscillators increases with the increase of the quantum number, one by one, similarly
to the nodal points in the wavefunctions of a particle in the one-dimensional box.

1.13 The angular momentum

Angular momentum is an important physical quantity, especially for problems of energy levels
and spectra of atoms and molecules. In this section, angular momentum is defined, and its
properties are described.

The angular momentum of a particle is defined as an outer product (vector product) r × p of
the position vector r representing its position (x, y, z) and its momentum p̂ = (p̂x, p̂y, p̂z).

l = r × p (1.96)

This equation can be rewritten with components.

lx = ypz − zpy
ly = zpx − xpz
lz = xpy − ypx

(1.97)

The angular momentum introduced here is called the orbital angular momentum, since it is related
to the classical orbital motion of the particle.

Example 1.12 Obtain the orbital angular momentum l of a particle of a mass m circulating
in the x–y plane with a constant velocity of v and a radius r. Then, rewrite Bohr’s condition of
quantization in eq.(1.21) for the restriction of the magnitude of the angular momentum | l |.

(Solution) Since z = 0, pz = 0 for the circular motion around the origin O in the x–y plane as
shown in the figure, the x and y components of l are both vanishing.

lx = ypz − zpy = y · 0− 0 · py = 0
ly = zpx − xpz = 0 · px − x · 0 = 0

Taking the angle θ and the direction of the velocity v as in the figure, we obtain the following
equations.

x = r cos θ
y = r sin θ
px = mvx = −mv sin θ
py = mvy = mv cos θ

The z component of l becomes

lz = xpy − ypx = mvr · cos2 θ +mvr · sin2 θ = mvr

Thus, three components of the orbital angular momentum l are expressed as

l = (0, 0,mvr)
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According to eq.(1.21), Bohr’s condition of quantization is

(mv)(2πr) = nh (n = 1, 2, 3, · · · )
Noting | l | = mvr in the above equation, we obtain

| l | = n~

Thus, Bohr’s condition of quantization indicates that the magnitude of the orbital angular mo-
mentum of the circular motion is quantized to be proportional to the integer multiple of ~.

The operator l̂ = (l̂x, l̂y, l̂z) corresponding to l can be obtained using a formula of eq.(1.53),
which was used for the derivation of the Hamiltonian operator. Using polar coordinates (r, θ, φ),
we obtain the following equations.

l̂x = −i~
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)

l̂y = −i~
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
(1.98)

l̂z = −i~ ∂
∂φ

These equations lead to a useful expression for the square of the angular momentum l2 = lx
2 +

ly
2 + lz

2. Thus , l̂2 which is proportional to the Legendre operator Λ.

l̂2 = −~2 · Λ (1.99)

Characteristic properties of the operator Λ have been studied very well in connection with the
spherical harmonics Yl,m. Some examples for Yl,m are shown in Table 1.3. The following relation
is very important.

ΛYl,m = −l(l + 1)Yl,m (1.100)

or
l̂2Yl,m = l(l + 1)~2Yl,m (1.101)

This is the eigen equation for l̂2; Yl,m is the eigen function, and l(l + 1)~2 is the eigen value. l is
the quantum number determining the magnitude of the orbital angular momentum. This is the
quantum number for the square of l and is restricted to be l = 0, 1, 2, 3, · · · .

The following relation for the z component of the angular momentum l̂z can be confirmed in
Table 1.3.

l̂zYl,m = m~Yl,m (1.102)

This is the eigen equation for l̂z; Yl,m is the eigen function, and m~ is the eigen value. m is the
quantum number for the z component of the orbital angular momentum, and its 2l + 1 possible
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Table 1.3: Spherical harmonics Yl,m(θ, φ)

Y0,0 = 1√
4π

Y2,±2 =
√

15
32π sin2 θe±i2φ

Y1,0 =
√

3
4π cos θ Y3,0 =

√
7

16π (5 cos3 θ − 3 cos θ)

Y1,±1 =
√

3
8π sin θe±iφ Y3,±1 =

√
21

64π (5 cos2 θ − 1) sin θe±iφ

Y2,0 =
√

5
16π (3 cos2 θ − 1) Y3,±2 =

√
105
32π cos θ sin2 θe±i2φ

Y2,±1 =
√

15
8π sin θ cos θe±iφ Y3,±3 =

√
35

64π sin3 θe±i3φ

values associated with the quantum number l are in the range from −l to +l. For example for
l = 1, allowed values are m = −1, 0, 1. Such characteristics of l and m are related to the behavior
of electrons in atoms. A similar relationship is also important in the description of molecular
rotational states. As studied in the rigid rotor of a diatomic molecule, the Hamiltonian operator
is proportional to the Legendrian operator Λ in eq.(1.100), the wavefunctions for the molecular
rotation become spherical harmonics Yl,m.

1.14 Measured values and expectation values

The eigen values (energy eigen values) that satisfy the wave equation for stationary states are
the allowed energies of the system, namely the energy levels. Therefore, the measured energy
values for the stationary states should agree with an energy eigen value. In other words, any value
different from the energy eigen values cannot be measured in principle, except for discrepancies
due to experimental errors. How about the eigen values of the momentum and those of the angular
momentum? It has been confirmed by experiments that the possible values to be measured for
an observable physical quantity should be eigen values of the operator of that observable.

If a system is in a stationary state, the energy should become a definite value, whenever it is
measured. This is because the wave function representing a state of the system is a particular
eigen function belonging to the respective eigen value. The momentum or the angular momentum
is not always definite, and their measured values may be different. This is related to the nature
of the wave function which does not need to be (or be proportional to )particular eigen functions
of the momentum or the angular momentum.

Quantum theoretical investigations of the uncertainty in measured quantities led to the following
rules.

(1) The wave function Ψ(q, t) can be expressed as the following form of a linear combination of
{φi}, which are eigen functions of the physical quantity F .

Ψ(q, t) =
∑

i

ci(t)φi(q) (1.103)

Here, the eigen equation for F is given as

F̂ φi(q) = fiφi(q) (1.104)

(2) Measured values of a physical quantity F should agree with one of eigen values for its
operator F̂ . The probability P (fi) of finding the i-th eigen value fi is given by the square
of the i-th coefficient ci in the above expansion in terms of normalized eigen functions {φi}.

P (fi) = a|ci|2 (1.105)

Since the total probability should be equal to unity,
∑

i

P (fi) = 1 (1.106)
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then the constant a in eq.(1.105) should be normalized as follows.

a =
1∑
i |ci|2

(1.107)

From the above two rules, the average of the measured values 〈f〉 is expected to be given by
the following formula.

〈f〉 =
∑

i

fiP (fi) (1.108)

The value of the right-hand side of this equation is determined by the magnitude of the expansion
coefficients {ci} which represent the amounts of the respective components included in the state
of Ψ. If all ci(i 6= 1) except for c1(i = 1) are 0, then 〈f〉 = f1. In this case, Ψ is a pure state of
Ψ = c1φ1, which includes only the first eigen function, and P (f1) = 1 for i = 1, while P (fi) = 0
for i 6= 1. When a particular eigen value fi among the whole eigen values {fi} of F̂ is always
observed, the state Ψ is the eigen state of the physical quantity F , and this physical quantity F
has always a certain value f . On the other hand for the more general cases of mixed states in
which Ψ contains several components among {φi}, measured values distribute over different eigen
values rather than fixed at a certain value.

The average of measured values 〈f〉 can be directly calculated by the quantum mechanical
expectation value 〈F 〉 defined by the following formula.

〈F 〉 =
∫

Ψ∗F̂Ψdq∫
Ψ∗Ψdq

. (1.109)

The integration should be taken for all variables symbolized as q over the entire ranges of the
variables of Ψ. When Ψ is already normalized, the denominator becomes unity and thus it may
be omitted.

1.15 The commutation relation and the uncertainty princi-
ple

Whether a pair of physical quantities F and G can have certain measured values simultaneously
or not is governed by the properties of the corresponding operators F̂ and Ĝ. In general, if there
exists a class of common eigen functions {φi}, then the following relationship holds.

F̂ Ĝ = ĜF̂ (1.110)

Conversely, if this relationship holds, then there exists a class of common eigen functions {φi} for
F̂ and Ĝ. The above relationship indicates that the operators F̂ and Ĝ commute and that the
order is interchangeable.

Let us consider a special case where an operator F̂ commutes with the Hamiltonian operator Ĥ.
In this case, there exists a function Ψ which is simultaneously an eigen function of both F̂ and Ĥ,
and then a pair of equations F̂Ψ = fΨ and ĤΨ = EΨ are compatible for the same function Ψ. In
such a special case, the wave function Ψ of the eigen function of Ĥ with an eigen value E is also
the eigen function of F̂ with an eigen value f . In a sense, this state of Ψ is a pure state in which
the physical quantity F has always a certain value f . The physical quantity F can have a certain
value, only if the corresponding operator F̂ commutes with Ĥ. If F̂ and Ĥ do not commute, F
does not have a certain value, and a measured value fi will be observed at a probability of P (fi),
according to the rule mentioned above.

Example 1.13 Confirm that the operator of the position coordinate x̂ and the operator of the
x-component of the linear momentum p̂x do not commute.

(Solution) Since x̂ = x and p̂x = −i~ ∂
∂x , we obtain the following equations for an arbitrary
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function φ(x).

x̂p̂xφ = x

(
−i~ ∂

∂x

)
φ = −i~x∂φ

∂x

p̂xx̂φ = −i~ ∂
∂x

(xφ) = −i~φ− i~x∂φ
∂x

It follows that
(x̂p̂x − p̂xx̂)φ = i~φ

Noting that φ is a function of x,
x̂p̂x − p̂xx̂ = i~

Since the right-hand side is not vanishing, we can conclude that x̂ and p̂x do not commute.

Similarly to the above example, ŷ and p̂y and also ẑ and p̂z do not commute. Therefore,
the position coordinate and the linear momentum cannot have certain values simultaneously.
Uncertainties of measured values were studied by W. K. Heisenberg. He found the following
relationship in 1927.

∆q∆p ≥ 1
2
~ (1.111)

Here, ∆q and ∆p denote the uncertainties for the position q and the corresponding momentum p.
Because of this relation, if we want to specify the position, measured values for the momentum
become uncertain with distributed values. Conversely, if we want to specify the momentum,
measured values for the position become uncertain. An analogous relationship was also found for
the uncertainty of the energy ∆E and the time interval ∆t necessary to measure.

∆E∆t ≥ 1
2
~ (1.112)

This means that we need the infinite time to determine the energy precisely. When the time
interval is very short, the energy becomes obscured rather than to be determined at a certain
value. The above two inequalities are called the uncertainty principle.

Exercises

1.1 Associated with a collision of an excited atom with the surface of an electrode in vacuum,
an electron can be emitted as a secondary electron from the surface, and such electrons can be
captured with a metal plate. Using such an apparatus with an ammeter, the electric current
through the circuit connecting the electrode with the metal plate was measured to be 160 pA (1 C
is the electric charge that the electric current of 1 A carries for 1 second). Calculate the number
of excited atoms per second, provided that one excited atom produces one secondary electron.

1.2 The velocity of a nitrogen molecule travelling in the atmosphere at ambient temperature is
ca. 500 ms−1. Calculate the kinetic energy of a nitrogen molecule with this velocity in units of J
or eV.

1.3 A group of infrared rays with wavelengths of 3.3, 6.2, 7.7, 8.6, and 11.3 µm are emitted
from various interstellar matters. It has been a long standing question to determine the substance
that emits these infrared rays. It is well known that infrared spectra of unsaturated hydrocarbon
molecules contain spectral lines of 3000 cm−1 of CH stretching modes, 1600 cm−1 and 1300 cm−1

of CC stretching modes, and 1140 cm−1 and 890 cm−1 of CCH angle bending modes. Which
of these wave numbers correspond to the unidentified infrared wavelengths from the interstellar
matter?

1.4 Estimate the surface temperature of a star emitting the thermal radiation with a maximum
wavelength of 500 nm. Answer this question consulting Example 1.5.

1.5 A photon emitted from a hydrogen atom in the excited state of principal quantum number
n = 2 hit another hydrogen atom in the state n = 2, and a photoelectron was ejected. Calculate
the kinetic energy of this photoelectron.
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1.6 An electron beam produced by acceleration of electrons with a potential difference of 600 V
was projected onto a crystal surface of Ni. The second order reflection was observed at an angle
of 34.5◦. Calculate the interval of the adjacent lattice planes of the crystal.

1.7 Write the wave equation for stationary states of a particle with a mass m moving under a
potential energy of U(r) = 1

2kr
2 (k > 0) depending only on the distance r. Indicate the dependence

on the three dimensional coordinates (x, y, z) explicitly.
1.8 The next two functions ψ1 and ψ2 are wavefunctions for stationary states of a one-dimensional

harmonic oscillator. A,B, and a (a > 0) are constants.

ψ1(x) = Ae−ax
2

ψ2(x) = Bxe−ax
2

Concerning these two functions, answer the next questions (1) and (2).
(1) Normalize ψ1 and ψ2. Using a formula of

∫∞
−∞ e−x

2
dx =

√
π, determine constants A and B,

so as to satisfy the normalization condition.
(2) Substitute ψ1 and ψ2 into the wave equation for stationary states of an oscillating particle with
a mass m and a force constant k. Obtain eigen values for ψ1 and ψ2 by transforming substituted
equations into a form proportional to the respective wavefunction.

1.9 Obtain the expectation value of the position coordinate for a particle in a one-dimensional
box with a length L.

1.10 Show that spherical harmonics functions of Y1,1, Y1,0, and Y1,−1 are eigen functions of the
operator for the square of the orbital angular momentum. Confirm that the eigen values for these
three functions coincide. Verify that any linear combination of these three functions is also an
eigen function of the operator for the square of the orbital angular momentum, and that its eigen
value also agrees with the eigen value of the three functions.



Chapter 2

Atom

Chemical elements, which are chemical varieties of atoms, are classified by atomic numbers.
Atoms of the same element are called isotopes, when total numbers of protons and neutrons in
the nuclei (mass numbers) are different. Although phenomena concerning with masses depnend on
isotopes and their abundance, chemcical properties are usually irrespective of the isotopes. This
is due to decisive roles of electrons which are small and mobile. Probabilities of electron transfer
are governed by numbers of electrons around nuclei. Electronic motion depends on the attractive
force caused by the nucleus charges. Since the number of electrons and the nucleus charge are
chararacteristic to each atomic number, chemical properties of atoms are closely related to the
atomic numbers.

In this chapter, we will study how characteristic properties of atoms appear dependning on the
atomic number. In the last section of this chapter, we will aslo study excited states and spectra
of atoms.

2.1 The hydrogenic atom

Let us first consider a hydrogenic atom, in which an electron is moving around a nucleus as
shown in fig.2.1. Based on such a simple system, we will study the fundamental characteristics of
energy levels and wavefunctions.

Figure 2.1: A hydrogenic atom. Z: atomic number, M : mass of the nucleus, m: mass of the
electron

39
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The electric charge of the nucleus is represented by the product of the atomic number Z and
the elementary charge e. The potential energy U is given by U = −Ze2/4πε0r. Using the formula
(1.73) for a two-particle system introduced in section 1.12, the Hamiltonian operator Ĥ of this
system is expressed by the following equation.

Ĥ = − ~
2

2µ
∆− Ze2

4πε0r
(2.1)

Here, µ is the reduced mass, which is given for the mass of the nucleus M and the mass of the
electron m by the following equation.

µ =
1

1/M + 1/m
(2.2)

When 1/M in the denominator of this equation for µ is neglected by noting M � m, the equation
reduces to µ = m, and the system becomes a simple model that an electron moves around the
resting nucleus. Errors due to this approximation are not very large, as can be seen below from the
Example 2.1. It follows that solutions of the wave equation of the Hamiltonian in eq.(1.73), which
are rigorously for the relative motion, can be understood to represent motions of the electron in
the atom.

A comparison with the case of a hydrogen atom (Z = 1) indicates that e2 is simply replaced by
Ze2 in the expression for the potential energy. Therefore, from eqs.(1.79) and (1.80), the energy
levels are given by the following equations.

En = −W (Z)
n2

(n = 1, 2, 3, · · · ) (2.3)

W (Z) =
µZ2e4

8ε0
2h2

(2.4)

Here, n is the principal quantum number that determines the energy level. W (Z) is the energy
required for removing one electron from the hydrogenic atom. This quantity for Z = 1 corresponds
to the ionization energy of hydrogen atom WH.

Example 2.1 How many times the energy is required for producing a di-positive ion of helium
(He2+) by removing an electron from a helium ion (He+) in comparison with the ionization energy
of hydrogen atom ?

(Solution) Ionization energy of an atom depends on the reduced mass µ and the atomic number
Z. Approximating the mass ratio of a proton and an electron as 1836 : 1 and also approximating
the mass ratio of a hydrogen nucleus and a helium nucleus as 1 : 4, we obtain the ratio of the
reduced masses as

µ(He)
µ(H)

=
1/1836 + 1

1/(1836× 4) + 1
=

4× (1 + 1836)
1 + 1836× 4

= 1.00041

For the difference of the atomic numbers, Z(He)2/Z(H)2 = 22/12 = 4. It follows that the ratio
obtained becomes 4.0016.

W (2) = 4× 1.00041×WH = 4.00164

If the difference of the reduced masses is neglected as µ(He) = µ(H) = m, then W (2) = 4WH,
which leads to an answer of 4 as the ratio to be obtained.

Using the Hamiltonian operator in eq.(1.77), the wave equation can be expressed in terms of
polar coordinates as follows.

− ~2

2µr2

(
∂

∂r

(
r2 ∂

∂r

)
+ Λ

)
Ψ = (E − U)Ψ (2.5)
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As studied for the angular momentum, Legendrian Λ only includes angular coordinates (θ, φ),
and it satisfies the following equation with the spherical harmonic functions Yl,m.

ΛYl,m = −l(l + 1)Yl,m (2.6)

Noting this equation, let us take the wave function in the following form.

Ψ = R(r) · Yl,m(θ, φ) (2.7)

From eqs.(2.5)-(2.7) we obtain
[
− ~2

2µr2

(
∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

)
R(r) + (U − E)R(r)

]
Yl,m = 0 (2.8)

The Ψ introduced in eq.(2.7) is able to become the solution of the wave equation of the hydrogenic
atom, provided that the function R(r) is determined to satisfy [ ] = 0. In this way, the wave
function of the hydrogenic atom is given in a form of a product of the radial part R(r) and the
angular part Yl,m(θ, φ).

The equation determining R(r) is given by as follows.

− ~2

2µr2

(
∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

)
R(r) = (E − U)R(r) (2.9)

By solving this differential equation to obtain continuous and finite functions, energy eigen values
E agree with eqs.(1.79) and (1.80), and the following restrictions to n and l are derived.

n = l + 1, l + 2, l + 3, · · · (n = 1, 2, 3, · · · ) (2.10)

Functions R(r) for the radial part are expressed in terms of mathematically well known Laguerre
polynomials Lα and a function of r given below as ρ.

ρ =
2Zr
na0

(2.11)

a0 =
ε0h

2

πµe2
(2.12)

Rn,l(ρ) = −
√

4(n− l − 1)!
n4[(n+ l)!]3

(
Z

a0

)3/2

ρle−ρ/2Ln+l
2l+1(ρ) (2.13)

Lα
β(ρ) =

dβ

dρβ
Lα(ρ) (β = 0, 1, 2, · · · , β ≤ α) (2.14)

Lα(ρ) = eρ
dα

dρα
(ραe−ρ) (α = 0, 1, 2, · · · ) (2.15)

Table 2.1: The radial part of the wave functions Rn,l(r)

R1,0 = 2
(
Z
a0

)3/2

e−(Z/a0)r

R2,0 = 1
2
√

2

(
Z
a0

)3/2 (
2− Zr

a0

)
e−(Z/2a0)r

R2,1 = 1
2
√

6

(
Z
a0

)3/2
Zr
a0

e−(Z/2a0)r

R3,0 = 2
81
√

3

(
Z
a0

)3/2 (
27− 18Zr

a0
+ 2Z2r2

a02

)
e−(Z/3a0)r

R3,1 = 4
81
√

6

(
Z
a0

)3/2 (
6Zr
a0
− Z2r2

a0

)
e−(Z/3a0)r

R3,2 = 4
81
√

30

(
Z
a0

)3/2
Z2r2

a02 e−(Z/3a0)r
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Here, Lαβ are associated Laguerre polynomials. a0 is a constant, which is equal to the Bohr radius
aB, when µ = m. As can be seen from Example 2.1, errors due to the approximation of µ = m are
as small as less than 0.1%. Thus, a0 may be considered to be equal to the Bohr radius aB. Table
2.1 shows the radial part of the wave functions Rn,l which can be obtained from eqs.(2.11)-(2.15).
Graphs of Rn,l for hydrogen are shown in fig.2.2.

Figure 2.2: Radial part Rn,l(r) of hydrogenic wave functions.

Since the square of the absolute value of the wave function is proportional to the probability
finding a particle, the form of Rn,l(r) determines the behavior of an electron in the atom with
respect to the distance r from the nucleus. This has a great significance in various chemical
phenomena in connection with the behavior of electrons in a general atom. As can be seen from
Table 2.1 and fig.2.2, the radial part of the wave functions Rn,l have mathematical properties
listed below. In connection with these properties, characteristic remarks on the r-dependence of
the probability finding an electron in the atom are shown in [ ]. As will be seen in Section 2.2,
the r-dependence of the probability of finding an electron is proportional to r2Rn,l

2.
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[Mathematical properties of the radial part of the wave functions and the r-dependence
of the probability of finding an electron]

(1) Because of an exponential factor, the functional value approaches 0 asymptotically associated
with the increase of r [moving outward from the nucleus, the probability of finding an electron
becomes to be vanishing].

(2) The coefficient of r in the exponent becomes smaller for the larger principal quantum number
n, and it follows that the functional value approaches 0 more slowly for the larger n [The
probability of finding an electron extends into the more outer regions on going from n = 1,
n = 2, and n = 3].

(3) The functional value at r = 0 is 0 except for l = 0 [There is no possibility of finding an
electron at the nuclear position except for l = 0].

(4) There are n− l − 1 distances (spheres) where no electron can be found with the functional
value being vanishing [In cases of n− l > 1, the probability of finding an electron decreases
to the outer regions with an oscillating behavior].

The principal quantum number n has an important significance that classifies the energy levels,
and it also characterizes the spatial behavior of the probability of finding an electron. It follows
that electrons in an atom extend outwards in forming electron shells of the K shell (n = 1), the
L shell (n = 2), the M shell (n = 3), the N shell (n = 4), the O shell (n = 5), the P shell (n = 6)
and so on. This propensity corresponds to the orbital radius in the Bohr model becoming larger,
associated with the increase of n.

In the Bohr model, the motion of an electron belonging to each electron shell is limited to a
simple circular orbit. In quantum mechanics, electronic motion becomes more complex because
forms of the wave functions depend not only on n but also on l and m. l and m are also quantum
numbers that specify atomic states and wave functions. l is called the azimuthal quantum number,
and m is called the magnetic quantum number. l is related to the directions and forms of wave
functions, and m is concerned with the phenomena that energy levels may vary with the applied
magnetic field.

The wave functions {Ψ} of a hydrogenic atom are expressed as a product of the radial part
Rn,l(r) in eq.(2.13) and the spherical harmonics functions Yl,m, and thus {Ψ} are specified by a
combination of three quantum numbers (n, l,m).

Ψn,l,m = Rn,l(r) · Yl,m(θ, φ) (2.16)

(r, θ, φ) are electron coordinates with respect to the nuclear position, and Ψn,l,m represents the
electronic motion in the atom. According to the correspondence with the orbital motion of the
electron in the Bohr model, wave functions for an electron in an atom are called atomic orbitals.
Atomic orbitals for general atoms are also expressed as a product of the radial part and the angular
part(spherical harmonics) as eq.(2.16) and are specified by three quantum numbers (n, l,m).
Although the angular part of atomic orbitals is the same for both hydrogenic atoms and general
atoms, the radial part is different for each atom. The characteristic properties of the radial part
(1)-(4) given above are common for all atoms.

As mentioned for the angular momentum, there are some restrictions for the two integers l
and m associated with the spherical harmonics functions Yl,m. Taking into account the relation
between l and n in eq.(2.10), we obtain the following equations.

l = 0, 1, 2, 3, · · · , n− 1 (n cases) (2.17)
m = −l,−l + 1, · · · , 0, · · · , l − 1, l (2l + 1 cases) (2.18)

There are n cases of l values for the same n (the n-th electron shell), and there are 2l+ 1 cases of
m values for the same l. It follows that the acceptable combinations of l and m for a particular
electron shell such as the n-th shell are determined to be n2 by the following calculation.

n−1∑

l=0

(2l + 1) =
2× n(n− 1)

2
+ n = n2 (2.19)
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Thus, there are 12 = 1 wave functions for the K shell, 22 = 4 for the L shell, and 32 = 9 for
the M shell. These numbers are related to the upper limits of numbers of electrons that can be
incorporated in a particular electron shell, as will be seen below in Section 2.5.

Although energy levels of hydrogenic atoms depend only on the principal quantum number n as
can be seen from eq.(2.3), wave functions representing the statistical nature of particles depend
on l and m as well as on n to have varieties of functional forms; there are one type for n = 1, four
types for n = 2, and nine types for n = 3, respectively. In other words, there are n2 different types
of wave functions with the same energy eigen value of En for all excited states (n > 1) except for
the ground state (n = 1). Wave functions have a four fold degeneracy for n = 2 and a nine fold
degeneracy for n = 3.

2.2 Forms of atomic orbitals

The creation and destruction of chemical bonds occurs under the action of interference among
electron waves. Their mechanisms are related to the forms of atom orbital functions. In this
section, classification and characteristics of orbital forms are discussed for atomic orbitals of
hydrogenic atoms as typical examples.

2.2.1 Classification of atomic orbitals

Atomic orbitals are wave functions representing electronic motion in an atom, and atomic
orbitals are classified into several types with the principal quantum number n and the azimuthal
quantum number l, as listed in Table 2.2.

Table 2.2: Classification of atomic orbitals

electron shell principal quantum numbern azimuthal quantum number l
0 1 2 3 4 5
s p d f g h

K 1 1s
L 2 2s 2p
M 3 3s 3p 3d
N 4 4s 4p 4d 4f
O 5 5s 5p 5d 5f 5g
P 6 6s 6p 6d 6f 6g 6h

The azimuthal quantum number is related to the characteristic features of spectral series in
atomic spectra. It follows that the first letters of the names for spectral series, such as sharp,
principal, diffuse, and fundamental, have been used as s for l = 0, p for l = 1, d for l = 2, and f
for l = 3.

2.2.2 s,p,d functions for the angular part

The names s, p, d for atomic orbitals are used for classification of the angular part. Although
prototypes of the angular part functions are spherical harmonic functions Yl,m(θ, φ), in actual
calculations and considerations conventional functions shown in Table 2.3 are used instead for
some reasons described below. The angular part such as s, p, and d are related to mechanisms
and directional characteristics in the formation of chemical bonds, and it follows that directions
and signs of the angular part should be studied carefully.

The s function of the angular part is only one kind, the spherical harmonic function of Y0,0,
as shown in Table 2.3, which has a constant value, irrespective of the angles θ and φ. Namely,
s-orbital functions are spherical, and values of s-orbital functions are the same for a constant value
of the distance r, irrespective of the directions.

Three types of spherical harmonics Y1,−1, Y1,0, Y1,1 correspond to p functions. As shown in
Table 1.3 in Section 1.13, Y1,−1, and Y1,1 are functions of complex numbers, and Y1,0 is a real
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Table 2.3: s, p, d functions for the angular part

l m definition functional form

s 0 0 Y0,0
1√
4π

px 1 ±1 Y1,1
+

√
3

4π
x
r

py 1 ±1 Y1,1
−

√
3

4π
y
r

pz 1 0 Y1,0

√
3

4π
z
r

dxy 2 ±2 Y2,2
−

√
15
4π

xy
r2

dyz 2 ±1 Y2,1
−

√
15
4π

yz
r2

dzx 2 ±1 Y2,1
+

√
15
4π

zx
r2

dx2-y2 2 ±2 Y2,2
+

√
15

16π
1
r2 (x2 − y2)

dz2 2 0 Y2,0

√
5

16π
1
r2 (3z2 − r2)

function expressed as follows.

Y1,0 =

√
3

4π
cos θ =

√
3

4π
z

r
(2.20)

Here, the relation of z = r cos θ from the definition of polar coordinates is used. Y1,0 depends on
the polar angle θ indicating the angle deflected from the z-axis, and the absolute value of Y1,0 is
at a maximum for the direction of the z-axis. Therefore, the Y1,0 function is called pz function.

pz = Y1,0 =

√
3

4π
z

r
(2.21)

Similar functions depending on the angles deflected from the x-axis and the y-axis can also be
defined by the following equations, and they are called the px function and the py function.

px =
Y1,1 + Y1,−1√

2
=

√
3

4π
x

r
(2.22)

py =
Y1,1 − Y1,−1√

2i
=

√
3

4π
y

r
(2.23)

Except for some special cases such as under a magnetic field, the three functions of px,py, pz are
conventionally used as the angular part of p functions. These p functions all satisfy the eigen
equation of (2.6) with an azimuthal quantum number of l = 1.

In the cases of m 6= 0 the spherical harmonics in Table 1.3 are functions of complex numbers in
general, and their mathematical treatments are cumbersome. It is convenient to use the following
functions with real values, which are denoted as Yl,m+ and Yl,m− and are equivalent to Yl,m, Yl,−m
to satisfy eq.(2.6).

Yl,m
+ =

Yl,m + Yl,−m√
2

(2.24)

Yl,m
− =

Yl,m − Yl,−m√
2i

(2.25)
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These functions are used in Table 2.3 for p and d functions.
The five types of d function shown in Table 2.3 correspond to the angular part for l = 2 and their

directional characteristics are more complex than p orbitals. The three dimensional characteristics
of orbital functions are not easily seen from their mathematical expressions, and it follows that
we will introduce several types of typical expression showing their forms.

2.2.3 Angular dependence and figures of polar coordinates

The angular part Y (θ, φ) determines the angular dependence of the probability of finding an
electron. Taking |Y | in each direction as the length of a vector with the respective direction from
the origin, a contour produced with the top point of the vector gives a figure of polar coordinates as
the three dimensional surfaces shown in Fig. 2.3. These figures represent the angular dependence
of atomic orbitals. Symbols of + and − in Fig. 2.3 indicate the signs for Y (θ, φ).

Figure 2.3: Angular dependence of s, p, d orbitals
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Example 2.2 Draw the figure of polar coordinates for pz function Y1,0 in the x-z plane.

(Solution) Since φ = 0, y = 0 in the x–z plane, x and z coordinates of the top point of the vector
P(x, 0, z) showing the magnitude as its length from the origin are given as follows.

x = |Y | sin θ
z = |Y | cos θ

Here, Y is

Y (θ, 0) =

√
3

4π
cos θ

Noting | cos θ| = cos θ for 0 ≤ θ ≤ π/2 and using a constant a,

a =

√
3

4π

x and z are expressed as

x = a cos θ sin θ
z = a cos θ cos θ = a · cos2 θ

Therefore,

x2 = a2 cos2 θ sin2 θ = a2 cos2 θ(1− cos2 θ) = a · z − z2

= −
(
z − a

2

)2

+
(a

2

)2

Thus, we obtain

x2 +
(
z − a

2

)2

=
(a

2

)2

This is a circle with a radius of a/2 located at (x, z) = (0, a/2). Another circle with a radius of
a/2 located at (x, z) = (0,−a/2) also satisfies the required condition, since | cos θ| = − cos θ for
π/2 ≤ θ ≤ π. Thus, we obtain two circles of the same radius with centers on the z axis, which
make contact with each other at the origin, as shown in the next figure.

As for φ 6= 0, the above figure should be rotated at an angle φ around the z axis leading to a
three dimensional figure composed of a pair of spheres as shown in Fig. 2.3.
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2.2.4 The radial dependence and the radial distribution

The radial dependence of atomic orbitals on the distance r from the nucleus is determined by
the radial part Rn,l(r). The probability of finding an electron in a region between a pair of spheres
with radii r and r+dr is introduced as D(r)dr, and this D(r) is defined as the radial distribution
function, which is used to understand the radial dependence of the wave function. Fig. 2.4 shows
some examples of D(r) for a hydrogen atom. Derivation of the radial distribution function D(r)
will be made below. Since D(r) becomes 0 where the radial part R has a node, there are (n− l)
maxima which is one more than the number of nodes for R. The largest value of D(r) is located
at the outermost maximum. The distance of the largest value rmax increases with the increase of
n. rmax indicates the place where the probability of finding an electron is large, and this distance
gives a measure for the size of electron shells as well as for the size of the atom and the bond
length.

Let us derive a formula for D(r). Integration of D(r) from 0 to ∞ should be equal to the
probability of finding an electron in the total space, which is the integrated value of the square of
the wave function Ψ over the whole range of the three dimensional space. This value should be
unity because of the normalization condition. Thus,

∫ ∞
0

D(r)dr =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Ψ|2dxdydz = 1 (2.26)

Figure 2.4: The radial distribution function D(r) = r2R2
n,l
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Figure 2.5: The volume element dv = r2sinθdφdθdr for polar coordinates

As can be seen in Fig. 2.5, for polar coordinates (r, θ, φ), the volume element dv = dxdydz can
be replaced by the following equation.

dv = dxdydz = r2 sin θdφdθdr (2.27)

It should be noted that the ranges of the integration are from 0 to 2π for φ, from 0 to π for θ, and
from 0 to ∞ for r. Substituting this replacement into the right side of eq.(2.26) and comparing it
with the left side, we obtain the formula for D(r) as the following integrations.

D(r) =
∫ π

0(θ)

∫ 2π

0(φ)

|Ψ|2r2 sin θdφdθ (2.28)

Next, replacement of Ψ by a product of the radial part R leads to an integration of the angular
part Y with respect to the angles θ and φ, which is the same as the normalization condition of
spherical harmonic functions Y . ∫ ∫

|Y |2 sin θdφdθ = 1 (2.29)

Thus, we obtain a formula for D(r) as follows.

D(r) = r2Rn,l(r)2 (2.30)

Example 2.3 Obtain D(r) for 1s wave function for a hydrogenic atom.

(Solution) The 1s wave function for a hydrogenic atom is given as

Ψ1s = Ψ1,0,0 = R1,0Y0,0
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Using the radial part of this wave function and eq.(2.30), the radial distribution function D(r) is
expressed as

D1s(r) = r2R1,0
2

Here,

R1,0 = 2
(
Z

a0

)3/2

e−(Z/a0)r

and we obtain

D1s(r) = 4
(
Z

a0

)3

r2e−(2Z/a0)r

It is clear from the differentiation of this equation that the maximum of D(r) is located at
r = a0/Z. In the case of a hydrogen atom (Z = 1), the distance for the maximum equals a0, and
this is nearly the same as the Bohr radius aB.

2.2.5 Contour lines

Some devices are required to represent atomic wavefunctions, since they are functions of three-
dimensional coordinates. For example, contour lines may be drawn on a certain plane for Ψ or
|Ψ|2 with the same value (Fig.2.6).

Since s orbitals have spherical symmetry, concentric circular lines will be drawn for any plane.
On the other hand, px, py, and pz orbitals have axial symmetries of the corresponding Cartesian
axes, and thus the largest values appear as a pair of points on the axes at symmetric positions.
The signs of the p functions for these pairs of points are opposite to each other. Since each p
function changes its sign on reflection in the plane including the origin and being vertical to the
axis, Ψ = 0 in the plane. In other words, each p function has a nodal plane vertical to the axis.

Figure 2.6: Contour lines for Ψ and |Ψ|2
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2.3 Many electron atoms

The problem to determining the motion of electrons in general atoms having many electrons is
not so easy as the problem of hydrogenic atoms. This is largely due to the following two reasons.
One reason is because interactions between electrons do not allow a treatment of independent
motion of individual electrons. Another reason is due to the presence of angular momenta of
electrons called electron spins which cannot easily be handled. Even for two electron systems
such as a helium atom, the wave equation cannot be solved rigorously. Hence, approximate
treatments are required. At the birth of the quantum theory, there was no modern computer
so that problems of two or more electron systems (many electron systems) were handled with
approximation methods such as perturbation or variation methods described in Chapter 3. In
these days, variational treatments suitable to modern computers have been developed to enable
us to perform calculations rather easily with some conventional program packages. In this section,
characteristics of wavefunctions and energy levels for many electron atoms will be compared with
those for hydrogenic atoms.

We may conclude here that the motion of individual electrons can be treated similarly to
1s, 2s, 2px,
2py, 2pz atomic orbitals in hydrogenic atoms. Although energy levels of hydrogenic atoms de-
pend only on the principal quantum number n, energy levels of many electron atoms with the
same principal quantum number n may become different as the lower values of the azimuthal
quantum number lead to the lower (more stable) energy levels. In the next section, consideration
of electron spins will make it possible to understand electron configurations in atomic orbitals and
their energy levels, which will be helpful to discuss individual properties of chemical elements.

2.3.1 Independent electron model

As mentioned for hydrogenic atoms, the motion of nucleus can be neglected with respect to
the motion of electrons. Thus, nuclei are fixed at the equilibrium positions in dealing with many
electron systems. Under this approximation, the Hamiltonian operator Ĥ for an N electron system
is given by the following equation.

Ĥ =
N∑

i=1

[
−
(
~2

2m

)
∆i − Ze2

4πε0ri

]
+
∑

i>j

e2

4πε0rij
(2.31)

Here, the inside of the parenthesis [ ] of the first term can be denoted as ĥi, which is an operator
concerned with the coordinates of the i-th electron. rij in the right side denotes the distance
between the i-th and the j-th electrons, and the terms including rij represent interactions between
electrons. As an exchange of i and j in interactions between electrons also leads to the same pair
of electrons, i > j attached to the summation symbol Σ indicates to sum up only once for a pair
of i and j. ĥi is the same as the Hamiltonian operator Ĥ of a hydrogenic atom with (µ = m)
except for the suffix i attached to ∆ and r, and its characteristic equation and solutions are as
follows.

ĥiφnlm = εnφnlm (2.32)

εn = − mZ2e4

8ε0
2h2n2

(2.33)

φn,l,m(ri, θi, φi) = Rn,l(ri) · Yl,m(θi, φi) (2.34)

φn,l,m is an atomic orbital representing the motion of an individual electron, as in the case of
hydrogenic atoms. In general, the orbital function representing motion of an electron is called an
orbital. The corresponding energy eigen value ε0 is called an orbital energy.

The omission of interactions between electrons in the second terms of eq.(2.31) yields a Hamil-
tonian Ĥ0 of the following form.

Ĥ0 =
N∑

i=1

ĥi (2.35)
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The eigen equation of this Ĥ0 is Ĥ0Φ = EΦ, and it can be solved easily from eqs.(2.32)-(2.34) to
give the following solutions.

Ĥ0Φn1···nN = En1···nNΦn1···nN (2.36)
Φn1···nN = φn1φn2 · · ·φnN (2.37)
En1···nN = εn1 + εn2 + · · ·+ εnN (2.38)

Here, the atomic orbital and the orbital energy for the first electron are shown as φn1 and εn1 rather
than written as φn1,l1,m1 and εn1,l1,m1 with three quantum numbers explicitly. This abbreviation
is applied to the last ones of φnN , εnN .

In hypothetical cases without interactions between electrons, the wave function and the energy
for collective motion of electrons can be expressed in terms of orbitals and their energies for
independent motion of individual electrons. Characteristic features for the independent electron
model are as follows.

[ Characteristic features of the independent electron model ]

(1) The wave function for a many electron system is expressed as a product of wavefunctions
for one-electron systems (orbitals).

(2) The energy for a many electron system is given as a simple summation of energies for one-
electron systems (orbital energies).

The feature (1) indicates that the probability of finding an electron at a certain position is given
as a product of the probabilities of finding individual electrons. The feature (2) suggests that the
lowest energy state, the ground state, of a many electron system is realized when individual
electrons are in their lowest energy states. Although occupation of all electrons in the 1s orbital
is possible for H and He atoms, this is not allowed for all other atoms with the larger atomic
numbers Z ≥ 3. The reason will be given in Section 2.4 in connection with the electron spin.

2.3.2 Screening effect and effective nucleus charge model

Interactions between electrons are omitted in the independent electron model. However, such an
approximate treatment is not appropriate for real systems, where interactions between electrons
are significant. Let us consider effects of interactions between electrons by using a simple model.

Now, let us estimate the effect of repulsive forces caused by other electrons on an electron
moving at a distance of r0 from the nucleus. The electrostatics gives the following two features
for the effects of repulsive interactions between electrons in an atom depending on the regions
whether other electrons are located at r > r0 or r < r0, provided that the electron distribution is
assumed to be spherical.

(1) There are no forces on average from the outer electrons (r > r0).

(2) Forces to the outward direction are caused on average by the inner electrons, and this effect
is equivalent to reducing the attractive force due to the nuclear charge, as if an electron is
fixed on the nucleus to decrease the nuclear charge by one.

The effect of the inner electrons reducing the electric attractive forces by the nucleus is called
the screening effect. The magnitude of the screening effect is larger for the outer electrons than
for the inner electrons. The screening effect is considered to be equivalent to replacing the atomic
number Z of the nucleus by the smaller number. The extent of the reduction s is introduced as
the screening constant, and the effective nucleus charge Z is defined as Z = Z − s. The screening
constant s approximately represents the number of the inner electrons. If an electron is located
in the outer most region, the screening constant for this electron will become s = Z − 1, and then
the corresponding effective nucleus charge becomes Z = Z − (Z − 1) = 1. This is important when
we will discuss the periodicity of ionization energies.

If we replace Z in the first terms in eq.(2.31) by Z together with omission of the interactions be-
tween electrons, a Hamiltonian Ĥ of a model in which interactions between electrons are effectively
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included in the effective nucleus charge defined as Z, given by

Ĥ =
N∑

i=1

[
−
(
~2

2m

)
∆i − Ze2

4πε0ri

]
(2.39)

This model is called the effective nuclear charge model. Rewriting the inside of [ ] in eq.(2.39)
by ĥi, we obtain the same results as eqs.(2.36)-(2.38). It follows that the characteristic features
mentioned for the independent electron model may also hold for the effective nuclear charge model.
It should be noted that the orbital energies in eq.(2.33) are modified by the replacement of Z by
Z, which depends on the orbital type and especially on the relative order of the inner or the outer
location with respect to other electrons. The effective nuclear charge model is useful to discuss
electronic configurations of atoms and their periodicity.

2.3.3 Atomic orbitals and energy levels for many electron atoms

Based on the variation method, a theoretical treatment, which is much more rigorous and
rational than the effective nuclear charge model, can be established to obtain orbital functions
and energies for many electron systems. Characteristic features of such results by the variation
method are described below.

The atomic orbital function φ is given as a product of the radial part R′(r) and the angular
part Y (θ, φ) as in the case of the hydrogenic atoms, and these atomic orbitals are classified with
a set of three quantum numbers, n, l, and m.

φn,l,m = Rn,l
′(r) · Yl,m(θ, φ) (2.40)

Yl,m is the spherical harmonic, and R′(r), which is different from R(r) for hydrogenic atoms, is
a function of r, qualitatively very similar to the hydrogenic function R(r) in the aforementioned
four respects concerning the asymptotic behavior and the nodes.

It follows that atomic orbitals are classified into 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz, 3dxy, 3dyz,
3dzx, 3dx2−y2 , 3dz2 , · · · , as in the case of hydrogenic orbitals.

Energy levels with the same principal quantum number n are degenerate for hydrogenic atoms,
while for more general many electron atoms, energies for orbitals with the same n may differ when
the l values are different; the smaller l leads to the lower energy. For example, the order of 3s, 3p,
and 3d orbital energies for many electron atoms are as follows.

3s (l = 0) < 3p (l = 1) < 3d (l = 2) (2.41)

The reason for this is related to the magnitude of the screening effects. The smaller l becomes,
the larger the probability of finding electrons in proximity to the nucleus, where the screening
effects are not effective. Hence, the lower l leads to the stronger attractive force from the nucleus
on average resulting in the lower energy and becoming more stable. If l is the same, the smaller
n gives the lower energy, as in the case of hydrogenic atoms.

2.4 Electron spin

Electron orbitals and energy levels of many electron systems are classified into 1s, 2s, 2p, 3s, 3p, 3d,
and so on as in the case of hydrogenic atoms. The problem is how the electrons are distributed
into electron orbitals. Are all electrons incorporated into the most stable 1s orbital with the lowest
energy ? The conclusion of the quantum theory is such that only two electrons can occupy the
same orbital. This rule is related to the special angular momentum of the electron spin.

2.4.1 Experimental grounds for the electron spin

The existence of the electron spin was verified by some experiments.

(1) Atomic beam experiments by Stern and Gerlach

A stream of atoms can be produced in a vacuum through a nozzle after evaporation of
silver or alkali metal by heating. Such a stream of atoms in vacuum is called an atomic
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beam. O. Stern and W. Gerlach discovered in 1922 that atomic beams of silver or sodium
atoms, which have one electron in the outermost electron shell, split into two lines in an
inhomogeneous magnetic field (Fig.2.7). This experiments suggested that an electron has a
magnetic moment, which is a magnetic property associated with a circular electric current.

Figure 2.7: Atomic beam experiments by Stern and Gerlach

(2) Double lines (doublets) in the spectrum of an alkali metal atom

An orange light from the flame reaction of sodium is also emitted from a discharge lamp
including sodium vapor. The dark lines (Fraunhofer lines) found in the spectrum of the sun
light contain the same wavelength lines as the sodium flame spectrum, called D lines. The
D lines of sodium originate from transitions between 3s and 3p levels, and they are observed
as two adjacent lines (doublets) of 5895.93 Å and 5889.97 Å. Such doublets were also found
for other alkali atoms, and intervals of the splitting were found to increase in the order of
Li < Na < K < Rb < Cs. S.A.Goudsmit and G.E.Uhlenbeck proposed that the splitting of
the spectral lines is due to the magnetic moment of an electron associated with its circular
motion. Since an angular momentum is associated with circular motion of an electric charge,
this angular momentum is the origin of the magnetic moment of an electron. The angular
momentum associated with the circular motion of an electron is called electron spin.

2.4.2 Operators, eigen functions, and quantum numbers for electron
spin

In order to consider electron spins in quantum mechanics, operators should be introduced
similarly to the orbital angular momentum. Let us denote the spin angular momentum as ŝ and
its z-component as ŝz. By analogy with the orbital angular momentum, a common eigen function
Γ for both ŝ and ŝz is expected to exist and to have the following relations.

ŝ2Γ = s(s+ 1)~2Γ (2.42)
ŝzΓ = ms~Γ (2.43)

s is the quantum number for the square of the spin and is called the spin quantum number. ms

is the quantum number for the component and is called the spin magnetic quantum number.
General rules for the angular momentum suggest that ms should have 2s + 1 possible values
of s, s − 1, · · · ,−s + 1,−s. By experiments, atomic beams are split into two components in a
magnetic field, and spectra of alkali atoms are split into two lines. Based on these findings, ms

is concluded to have only two possible values. It follows that 2s + 1 = 2, and thus we obtain
s = 1/2, ms = ±1/2. It should be noted that the spin quantum number is a half integer with
only one value of s = 1/2. Allowed values for ms are limited to be ±1/2. The spin is a very
special angular momentum in comparison with the orbital angular momentum.

Although such special properties of the spin angular momentum are difficult to be understood
conceptually, their mathematical treatments are much more simplified. Because of only two
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allowed states, there are only two eigen functions. Usually, the spin function corresponding to
ms = 1/2 is denoted as α, and the other spin function for ms = −1/2 is denoted as β.

ŝzα =
1
2
~α (2.44)

ŝzβ = −1
2
~β (2.45)

In connection with the orientation of the magnetic moment associated with the spinning motion,
the upward one is called the α spin, and the downward one is called the β spin, respectively. The
variable σ for spin functions α(σ), β(σ) is called the spin coordinate.

Although the significance of the spin coordinate σ is not clear, we need not to consider what it
represents. The spin coordinate is the fourth coordinate following the other three coordinates for
the position in the three dimensional space. Formally, allowed values for the spin coordinates are
only two cases, the upward orientation of σ = ↑ and the downward orientation of σ = ↓.

α(↑) = 1, α(↓) = 0
β(↑) = 0, β(↓) = 1 (2.46)

The probability of finding an electron at σ = ↑ is 1 in the upward spin state of α and 0 in the
downward spin state β. On the other hand, the probability of finding an electron at σ = ↓ is 0 in
the upward spin state of α and 1 in the downward spin state β.

In quantum mechanics, integrals are need to be calculated in connection with probabilities and
normalization. As for the spin, a simple summation for the two coordinates ↑ and ↓ is only
required. For example, eq.(2.46) leads to

∫
|α|2dσ = |α(↑)|2 + |α(↓)|2

= 1 + 0 = 1 (2.47)

and similarly
∫
|β|2dσ = |β(↑)|2 + |β(↓)|2

= 0 + 1 = 1 (2.48)

In addition,
∫
α∗βdσ = α∗(↑)β(↑) + α∗(↓)β(↓)

= 1 · 0 + 0 · 1 = 0 (2.49)

As can be seen from these calculations, the spin functions α, β in eq.(2.46) satisfy the orthonor-
mality.

For a wave function Ψ of an electron considering the electron spin, the variables are the spatial
coordinates x, y, z and the spin coordinate σ. If the component of the electron spin sz has a certain
value, the spin function is either α or β. It follows that the spatial orbital functions for Cartesian
coordinates φ(x, y, z) lead to the following pair of wavefunctions for electrons accommodated in
this spatial orbital.

Ψ(x, y, z, σ) = φ(x, y, z) · α(σ) (2.50)

Ψ(x, y, z, σ) = φ(x, y, z) · β(σ) (2.51)

These equations are related with a rule that the number of electrons in each spatial orbital (in
the case of an atom, 1s, 2s, 2px, 2py, 3dxy orbitals, etc.) should not exceed two.

2.4.3 Restriction to many-electron wavefunctions and the Pauli princi-
ple

The question of how many electrons can occupy an atomic orbital such as the 1s orbital is
an important problem in connection with atomic spectra and atomic properties. The solution of
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this problem was given by Pauli in 1924, and it is a rule called the Pauli principle or The Pauli
exclusion principle.
[ The Pauli principle (The exclusion principle) ]

Each orbital can be occupied by an electron with α spin or β spin, but it cannot be occupied
by two or more electrons with the same spin.

This rule is established by Pauli, based on experimental results such as atomic spectra. It is
very important that electrons obey this rule, in connection with the construction of many-electron
wavefunctions.

Let us consider two electrons. One is located at a coordinate q1 and the other at q2. This
state is represented by a wave function written as Ψ(q1, q2). Similarly, a state of two electrons
with their coordinates interchanged may be written as Ψ(q2, q1). Although Ψ(q1, q2) and Ψ(q2, q1)
are mathematically different expressions specifying the numbering of the electrons as 1 and 2, we
cannot recognize any difference of the numbering when we observe the electrons. It follows that
the probability of finding the number 1 electron at q1 and the number 2 electron at q2 should be
exactly the same as the probability finding the number 1 electron at q2 and the number 2 electron
at q1. This condition is expressed by the following equation.

|Ψ(q1, q2)|2 = |Ψ(q2, q1)|2 (2.52)

Noting that wavefunctions are complex numbers in general, we obtain

Ψ(q1, q2) = exp(iθ) ·Ψ(q2, q1) (2.53)

The initial choice of the two electrons as well as their geometries is arbitrary. Thus, it is not
reasonable to assume that the constant θ in eq.(2.53) is different depending on the choice of
electrons and their geometries. Therefore, the same relationship should hold for an interchange
of q1 and q2.

Ψ(q2, q1) = exp(iθ) ·Ψ(q1, q2) (2.54)

These two equations lead to
Ψ(q1, q2) = exp(iθ)2 ·Ψ(q1, q2) (2.55)

Thus,
exp(iθ)2 = exp(2iθ) = 1 (2.56)

This leads to
exp(iθ) = ±1 (2.57)

It follows that
Ψ(q2, q1) = ±Ψ(q1, q2) (2.58)

Namely, the sign of a wave function is either unchanged or changed when a pair of identical
particles are interchanged with their geometrical coordinates.

The nature of the particles determines which of the two possibilities is the case.

(1) For the sign unchanged with a multiplication of +1, wavefunctions are symmetric with
respect to the interchange of coordinates, and this type of particle is called a Bose particle
or Boson.

(2) For the sign changed with a multiplication of −1, wavefunctions are antisymmetric with
respect to the interchange of coordinates, and this type of particle is called a Fermi particle
or Fermion.

The Pauli principle shows that electrons are Fermions and that the wave function changes its sign
on the interchange of the coordinates.

If a symmetric wave function were allowed for electrons, it would contradict the Pauli principle.
For example, let us assume that there are two electrons occupying the 1s orbital with α spin. The
corresponding wave function Ψ for this assumption is expressed with the orbital function φ1s as
follows.

Ψ(x1, y1, z1, σ1, x2, y2, z2, σ2)
= φ1s(x1, y1, z1)α(σ1)φ1s(x2, y2, z2)α(σ2) (2.59)
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Now, let us interchange the coordinates of number 1 and number 2, and then we obtain

Ψ(x2, y2, z2, σ2, x1, y1, z1, σ1)
= φ1s(x2, y2, z2)α(σ2)φ1s(x1, y1, z1)α(σ1)
= φ1s(x1, y1, z1)α(σ1)φ1s(x2, y2, z2)α(σ2)
= Ψ(x1, y1, z1, σ1, x2, y2, z2, σ2) (2.60)

This clearly shows the symmetry of wavefunctions for a Boson. In other words, if electrons are
Bosons, there would be two or more electrons occupying the same 1sα state in an atom. However,
this situation contradicts the Pauli principle.

On the other hand for an antisymmetric wave function, no state that contradicts the Pauli
principle is acceptable. This feature can be seen easily when a determinant wave function, which
is proposed by J. C. Slater and is called a Slater determinant, is used.

Let us introduce two orbital functions ψ1, and ψ2 which include spin coordinates in addition to
spatial coordinates. We write the wave function Ψ for the system of 2 electrons as the following
determinant.

Ψ(q1, q2) =
1√
2

∣∣∣∣
ψ1(q1) ψ2(q1)
ψ1(q2) ψ2(q2)

∣∣∣∣ (2.61)

After expansion, we obtain the following equations showing the antisymmetric character.

Ψ(q1, q2) =
1√
2
{ψ1(q1)ψ2(q2)− ψ1(q2)ψ2(q1)}

= − 1√
2
{ψ1(q2)ψ2(q1)− ψ1(q1)ψ2(q2)}

= −Ψ(q2, q1) (2.62)

It should be noted here that the Hamiltonian Ĥ is invariant on the interchange of coordinates of
identical particles, and that if Ψ = ψ1(q1)ψ2(q2) is a solution of ĤΨ = EΨ, then Ψ = ψ1(q2)ψ2(q1)
is also a solution of ĤΨ = EΨ. It follows that the above determinant satisfies ĤΨ = EΨ. Using
a determinant as proposed by Slater, we can construct an antisymmetric wave function composed
of orbital functions.

Now, let us assume again that there are two electrons occupying the 1s orbital with the same
α spin. In this case, ψ1 = φ1s · α, ψ2 = φ1s · α, that is ψ1 = ψ2. Thus, we may omit the suffixes
as ψ1 = ψ2 = ψ. The determinant wave function for this system becomes

Ψ(q1, q2) =
1√
2

∣∣∣∣
ψ1(q1) ψ2(q1)
ψ1(q2) ψ2(q2)

∣∣∣∣ =
1√
2

∣∣∣∣
ψ(q1) ψ(q1)
ψ(q2) ψ(q2)

∣∣∣∣

=
1√
2
{ψ(q1)ψ(q2)− ψ(q2)ψ(q1)} = 0 (2.63)

The vanishing value of this determinant is a necessary result of a general rule for determinants
that a determinant with a pair of the same rows or the same columns becomes vanishing. If this
rule is used, the determinant in eq.(2.63) is easily found to be vanishing without expansion. Based
on this result, it is easily seen that a configuration of electrons occupying orbitals in contradiction
with the Pauli principle leads to a physically unacceptable wave function with a vanishing value
indicating no particles at all. Careful and detailed inspections have shown that antisymmetric
wavefunctions are compatible with the Pauli principle. It follows that electrons are Fermions with
the antisymmetric character.

Hence, it is convenient to express a many-electron wave function as a determinant of a matrix
in which orbital functions are arrayed. A determinant wave function composed of normalized
orbital functions is also normalized as a many electron function, provided that a factor of 1/

√
N !

is attached. In order to express a determinant wave function in a short form, we may write it as
|ψ1ψ2 · · ·ψN | by an array of orbital functions {ψi} between a pair of vertical bars.

An array of orbital functions in a matrix form is equivalent to making an electron configuration
corresponding to occupation of the electrons in respective orbitals. This in other words implies that
electrons occupy the respective electron energy levels. Thus, the situation of electrons occupying
certain orbitals or levels is called electron configuration or electronic configuration. Determinant
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wavefunctions are used as the mathematical expressions of electron configuration. The conceptual
treatment of making an electron configuration can be understood as the occupation of orbitals by
electrons.

The construction of determinant wavefunctions has no physical significance if its value is vanish-
ing in contradiction with the existence of electrons. In order to avoid such a nonsensical situation,
care should be taken so that no identical orbital functions may be included in the array of orbitals
in the determinant. In other words, we should not use the same combination of a function of
spatial coordinates and a spin function more than once in the determinant. The use of determi-
nant wave functions guarantees the satisfaction of the antisymmetric properties of electrons, and
hence electron configurations contradicting Pauli principle are automatically avoided, since values
of such determinants are vanishing.

2.5 Electron configuration in atoms

Based on spectroscopic experiments and quantum theoretical studies, the electron configurations
in the ground states of atoms were determined as shown in Table 2.4.
[Construction principle of electron configurations in atoms]

Electron configurations in the ground states of atoms can be constructed by the following rules.

(1) Electrons occupy preferentially the lower energy orbitals according to the order of the orbital
energies.

(2) The order of the orbital energies are as follows.

1s < 2s < 2p < 3s < 3p < (4s, 3d) < 4p < (5s, 4d)
< 5p < (6s, 4f, 5d) < 6p < (7s, 5f, 6d) (2.64)

The items on the left are more stable with lower energy than the items on the right. Among
orbitals in the same parentheses, the left ones are preferred to be occupied, though the order
may be reversed sometimes.

(3) The Pauli principle should be satisfied. Namely, the allowed occupancy of orbitals is one of
the following four cases.

(4) ns orbitals are occupied by 0∼2 electrons.
np orbitals is classified into three types, npx, npy, npz, and each orbital is occupied by 0∼2
electrons. Altogether, np orbitals can be occupied by 0∼6 electrons.
There are five types for nd orbitals. Each one is occupied by 0∼2 electrons. Altogether, nd
orbitals can be occupied by 0∼10 electrons.
There are seven types for nd orbitals. Each one is occupied by 0∼2 electrons. Altogether,
nf orbitals can be occupied by 0∼14 electrons.

(5) Configurations in which two or more electrons occupy orbitals with the same energy should
follow Hund’s rule.

Hund’s rule (1) Electrons are separated in different orbitals as far as possible.
Hund’s rule (2) Spins are aligned to be parallel as far as possible.

Hund’s rule (1) is a rule to reduce the increase of the interaction energy due to repulsion
between electrons, for which separation of electrons in different orbitals is effective. Hund’s rule
2 is a propensity that spins with the same directions tend to be more stabilized. Consideration
of these rules leads to the following order of the total energies for electronic configurations of
two-electron systems in a pair of equivalent orbitals.

(2.65)
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As an example, let us construct the electron configuration of a Ga atom with the atomic number
31. 1s, 2s, 2p, 3s, 3p, 4s, and 3d orbitals are occupied by 2 + 2 + 6 + 2 + 6 + 2 + 10 = 30 electrons.
The remaining 31 − 30 = 1 electron occupies a 4p orbital. Thus, the electron configuration of a
Ga atom, [Ga], is expressed as follows.

[Ga] = (1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)10(4p)1

The insides of ( ) represent orbitals with the same principal quantum number n and the same
azimuthal quantum number l, a part of the electron shells, and thus they are called subshells.
The right-hand superscript attached to ( ) denotes the total number of electrons occupying the
subshell. When the number of electrons is 1, the figure 1 of the right-hand superscript may be
omitted. Among electron shells having electrons, the electron shell of the largest n is called the
outermost shell. In the case of Ga, n ≤ 4, and thus the N shell is the outermost shell.

Typical examples of electron configurations are shown for some atoms.

Examples of electron configurations of atoms

[He] = (1s)2

[Li] = (1s)2(2s)1 = [He](2s)1

[Ne] = [He](2s)2(2p)6

[Ar] = [Ne](3s)2(3p)6

[Cr] = [Ar](4s)1(3d)5

[Fe] = [Ar](4s)2(3d)6

[Cu] = [Ar](4s)1(3d)10

[Ge] = [Ar](4s)2(3d)10(4p)2

Here, it should be noted that electron configurations for Cr and Cu are exceptions of the order
among the inside of ( ) for the rule (2) in the construction principle; the configuration of the (4s)
subshell is (4s)1 rather than (4s)2, and one electron occupies a 3d orbital so that the (3d) subshell
becomes a half-occupied configuration of (3d)5 or a fully occupied configuration of (3d)10.

Exercise 2.4 Show the electron configuration of a carbon atom using electron energy levels.

(Solution) The electron configuration of a C atom is

[C] = (1s)2(2s)2(2p)2

Since atomic orbitals up to 2p are occupied by electrons, electron energy levels from 1s to 2p
should be shown, and the higher levels may be omitted. According to Hund’s rules (1) and (2),
the electron configuration for (2p) subshell becomes the following spin parallel configuration.
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Table 2.4: Electron configurations of atomic ground-states and spectral terms

period shell K L M N O term
orbital 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

1 1 H 1 2S1/2
2 He 2 1S0

2 3 Li 2 1 2S1/2
4 Be 2 2 1S0
5 B 2 2 1 2P1/2
6 C 2 2 2 3P0
7 N 2 2 3 4S3/2
8 O 2 2 4 3P2
9 F 2 2 5 2P3/2

10 Ne 2 2 6 1S0

3 11 Na 2 2 6 1 2S1/2
12 Mg 2 2 6 2 1S0
13 Al 2 2 6 2 1 2P1/2
14 Si 2 2 6 2 2 3P0
15 P 2 2 6 2 3 4S3/2
16 S 2 2 6 2 4 3P2
17 Cl 2 2 6 2 5 2P3/2
18 Ar 2 2 6 2 6 1S0

4 19 K 2 2 6 2 6 1 2S1/2
20 Ca 2 2 6 2 6 2 1S0
21 Sc 2 2 6 2 6 1 2 2D3/2
22 Ti 2 2 6 2 6 2 2 3F2
23 V 2 2 6 2 6 3 2 4F3/2
24 Cr 2 2 6 2 6 5 1 7S3
25 Mn 2 2 6 2 6 5 2 6S5/2
26 Fe 2 2 6 2 6 6 2 5D4
27 Co 2 2 6 2 6 7 2 4F9/2
28 Ni 2 2 6 2 6 8 2 3F4
29 Cu 2 2 6 2 6 10 1 2S1/2
30 Zn 2 2 6 2 6 10 2 1S0
31 Ga 2 2 6 2 6 10 2 1 2P1/2
32 Ge 2 2 6 2 6 10 2 2 3P0
33 As 2 2 6 2 6 10 2 3 4S3/2
34 Se 2 2 6 2 6 10 2 4 3P2
35 Br 2 2 6 2 6 10 2 5 2P3/2
36 Kr 2 2 6 2 6 10 2 6 1S0

5 37 Rb 2 2 6 2 6 10 2 6 1 2S1/2
38 Sr 2 2 6 2 6 10 2 6 2 1S0
39 Y 2 2 6 2 6 10 2 6 1 2 2D3/2
40 Zr 2 2 6 2 6 10 2 6 2 2 3F2
41 Nb 2 2 6 2 6 10 2 6 4 1 6D1/2
42 Mo 2 2 6 2 6 10 2 6 5 1 7S3
43 Tc 2 2 6 2 6 10 2 6 5 2 6S5/2
44 Ru 2 2 6 2 6 10 2 6 7 1 5F5
45 Rh 2 2 6 2 6 10 2 6 8 1 4F9/2
46 Pd 2 2 6 2 6 10 2 6 10 1S0
47 Ag 2 2 6 2 6 10 2 6 10 1 2S1/2
48 Cd 2 2 6 2 6 10 2 6 10 2 1S0
49 In 2 2 6 2 6 10 2 6 10 2 1 2P1/2
50 Sn 2 2 6 2 6 10 2 6 10 2 2 3P0
51 Sb 2 2 6 2 6 10 2 6 10 2 3 4S3/2
52 Te 2 2 6 2 6 10 2 6 10 2 4 3P2
53 I 2 2 6 2 6 10 2 6 10 2 5 2P3/2
54 Xe 2 2 6 2 6 10 2 6 10 2 6 1S0
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period shell K L M N O P Q term
orbital 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s · · ·

6 55 Cs 2 8 18 2 6 10 2 6 1 2S1/2
56 Ba 2 8 18 2 6 10 2 6 2 1S0
57 La 2 8 18 2 6 10 2 6 1 2 2D3/2
58 Ce 2 8 18 2 6 10 1 2 6 1 2 3H4
59 Pr 2 8 18 2 6 10 3 2 6 2 4I
60 Nd 2 8 18 2 6 10 4 2 6 2 5I4
61 Pm 2 8 18 2 6 10 5 2 6 2 6H
62 Sm 2 8 18 2 6 10 6 2 6 2 7F0
63 Eu 2 8 18 2 6 10 7 2 6 2 8S7/2
64 Gd 2 8 18 2 6 10 7 2 6 1 2 9D2
65 Tb 2 8 18 2 6 10 9 2 6 2 6H17/2
66 Dy 2 8 18 2 6 10 10 2 6 2 5I
67 Ho 2 8 18 2 6 10 11 2 6 2 4I
68 Er 2 8 18 2 6 10 12 2 6 2 3H
69 Tm 2 8 18 2 6 10 13 2 6 2 2F7/2
70 Yb 2 8 18 2 6 10 14 2 6 2 1S0
71 Lu 2 8 18 2 6 10 14 2 6 1 2 2D3/2
72 Hf 2 8 18 2 6 10 14 2 6 2 2 3F2
73 Ta 2 8 18 2 6 10 14 2 6 3 2 4F3/2
74 W 2 8 18 2 6 10 14 2 6 4 2 5D0
75 Re 2 8 18 2 6 10 14 2 6 5 2 6S5/2
76 Os 2 8 18 2 6 10 14 2 6 6 2 5D4
77 Ir 2 8 18 2 6 10 14 2 6 7 2 4F9/2
78 Pt 2 8 18 2 6 10 14 2 6 9 1 3D3
79 Au 2 8 18 2 6 10 14 2 6 10 1 2S1/2
80 Hg 2 8 18 2 6 10 14 2 6 10 2 1S0
81 Tl 2 8 18 2 6 10 14 2 6 10 2 1 2P1/2
82 Pb 2 8 18 2 6 10 14 2 6 10 2 2 3P0
83 Bi 2 8 18 2 6 10 14 2 6 10 2 3 4S3/2
84 Po 2 8 18 2 6 10 14 2 6 10 2 4 3P2
85 At 2 8 18 2 6 10 14 2 6 10 2 5 2P3/2
86 Rn 2 8 18 2 6 10 14 2 6 10 2 6 1S0

7 87 Fr 2 8 18 2 6 10 14 2 6 10 2 6 1 2S1/2
88 Ra 2 8 18 2 6 10 14 2 6 10 2 6 2 1S0
89 Ac 2 8 18 2 6 10 14 2 6 10 2 6 1 2 2D3/2
90 Th 2 8 18 2 6 10 14 2 6 10 2 6 2 2 3F2
91 Pa 2 8 18 2 6 10 14 2 6 10 2 2 6 1 2
92 U 2 8 18 2 6 10 14 2 6 10 3 2 6 1 2 5L4
93 Np 2 8 18 2 6 10 14 2 6 10 4 2 6 1 2
94 Pu 2 8 18 2 6 10 14 2 6 10 6 2 6 2
95 Am 2 8 18 2 6 10 14 2 6 10 7 2 6 2 8S7/2
96 Cm 2 8 18 2 6 10 14 2 6 10 7 2 6 1 2
97 Bk 2 8 18 2 6 10 14 2 6 10 (8) 2 6 (1) 2
98 Cf 2 8 18 2 6 10 14 2 6 10 (9) 2 6 (1) 2

(Note) In the 6-th or 7-th period, the total number of electrons is

only shown for K, L, and M shells since they are fully occupied.

2.6 The periodicity

The properties of the elements exhibit a periodicity, which originates from the periodicity in
electron configurations. In this section, ionization energies and electron affinities are studied in
connection with the periodicity. First, experimental results are surveyed, and then relations with
electron configurations are discussed.

2.6.1 Ionization energy and electron affinity

The energy required to make the n + 1 valent ionic state by removing an electron from the
n valent ionic state of a matter is called the n + 1-th ionization energy. This definition may be
applied to n ≥ 0. In the case of n = 0, namely the energy required to remove an electron from
neutral matter is called the first ionization energy. Usually, the ionization energy denotes the first
ionization energy. Figure 2.8. and Table 2.5. show the periodicity of the first ionization energies
for atoms, and their main features are as follows.
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Figure 2.8: The periodicity of ionization energy

Feature (1) Associated with the increase of the atomic number, maxima are found at the rare
gas atoms.

Feature (2) Associated with the increase of the atomic number, minima together with sudden
drops from rare gas atoms are found at the alkali metal atoms.

Feature (3) Along the same row of the periodic Table, an increasing propensity is found as a
whole on going from alkali metal atoms to rare gas atoms.

Feature (4) Fine features along the same row of the periodic Table include small maxima at
the second or the fifteenth group together with minima at the next group.

Feature (5) In the same group, a decreasing propensity is found on going downward in the
periodic Table.

Table 2.5: Ionization energies of atoms(eV)

H He
13.6 24.6
Li Be B C N O F Ne
5.4 9.3 8.311.3 14.5 13.6 17.4 21.6
Na Mg Al Si P S Cl Ar
5.1 7.6 6.0 8.1 11.0 10.4 13.0 15.8
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
4.3 6.1 6.6 6.8 6.7 6.8 7.4 7.9 7.9 7.6 7.7 9.4 6.0 8.1 10.0 9.8 11.8 14.0
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The energy emitted on attachment of an electron to electrically neutral matter is called the elec-
tron affinity, which is equivalent to the energy required to remove an electron from a monovalent
negative ion. Electron affinities for atoms also exhibit a periodicity variation as shown in Table
2.6. Although their propensities for variations along vertical and horizontal arrays in the periodic
Table are largely similar to those for ionization energies, locations of the outstanding maxima are
displaced to halogen atoms from rare gas atoms, and minima are shifted to rare gas atoms.

Table 2.6: Electron affinities of atoms(eV)

H He
0.75 < 0
Li Be B C N O F Ne

0.62< 0 0.281.27−0.11.463.40< 0
Na Mg Al Si P S Cl Ar
0.55< 0 0.461.39 0.742.083.62< 0
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

0.50< 0< 00.20.50.66< 00.250.71.151.23∼ 00.301.2 0.802.023.36< 0

Various methods were devised for measuring the energy W required to remove one electron. For
example, based on a method similar to the study of the photoelectric effect, the kinetic energy
1
2mv

2 of electrons ejected from matter irradiated with a photon of hν can be determined, and
then W is obtained from the following formula.

W = hν − 1
2
mv2 (2.66)

This method is often used for the measurement of ionization energies and electron affinities.

2.6.2 Effective nuclear charge and rules to calculate screening constants

On account of the periodicity in electron configurations, effective nuclear charges of atoms are
closely related to the periodicity in ionization energies and electron affinities. Let us study how
effective nuclear charges depend on the screening effects mentioned in section 2.3.

In order to obtain the effective nuclear charge Z̄, the screening constant s should be determined
in addition to the atomic number Z. The screening constant s can be estimated easily based on
the following rules.

[Rules to calculate screening constants]

(1) Since screening effects are caused by the repulsive forces of the other electrons against the
electron concerned, the screening constant is estimated as a sum of contributions due to
individual electrons.

(2) Since screening effects depend crucially on the location of the electrons, whether inside or
outside of the electron concerned, as mentioned in section 2.3, relative positions of electron
orbitals in atoms are classified into the following groups divided with slashes.

/1s/2s, 2p/3s, 3p/3d/4s, 4p/4d/4f/5s, 5p/5d/5f/

From the left to the right, the orbitals expand from the most inward to the most outward.
ns and np belong to the same group considering the similar location of these orbitals.

(3) Contributions due to electrons of the outer groups are 0, since they do not cause screening
effects.

(4) Contributions due to electrons of the same group are considered to be 1/3, because of
incomplete screening effects associated with the relative probability of residing in the inward
region.

(5) Contributions due to electrons of the inner groups are set equal to 1, since the inner electrons
give complete screening effects.
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The above rules are simplified versions of Slater’s rules in 1930, from which the essential parts
are only retained. The rules (1)-(3) are the same. As for (4), Slater introduced a subtle difference
between 1s and other orbitals, 0.30 for 1s and 0.35 for others. Though (5) is the same except for
electrons in ns or np, Slater considered that electrons in (n− 1)s or (n− 1)p have contributions
of 0.85 for the screening with respect to the selected electron in the n-th shell, since the screening
effects may be incomplete for the nearly overlapping electron shells. Slater’s rules have been used
to construct atomic orbital functions by simple treatments for various atoms, and they played
important roles especially in early days of quantum chemistry. Atomic orbital functions with a
form proposed by J. C. Slater are called Slater type orbital(STO), and they have been used even
in recent program packages for quantum chemistry.

2.6.3 Effective nuclear charge and ionization energies

Loosely bound electrons in the outermost electron shell are the most important to be considered
for ionization energies of atoms. Now, let us estimate the effective nuclear charge for an electron
in the outermost electron shell, using the above rules for screening constants. For example, we
consider a 2p electron of a fluorine atom F (Z=9). The electron configuration of a F atom is as
follows.

(1s)2(2s)2(2p)5

On the inner side of the noted 2p electron, there are two 1s electrons, which yield a contribution
of 1 × 2 from the rule (5). In the same region as 2p, there are six electrons altogether, two 2s
electrons and 5-1=4 electrons in 2p, which give a contribution of 1

3 × 6 from the rule (4). Thus,
s = 1×2+ 1

6 = 4, and it follows that the effective nucleus charge Z̄ becomes Z̄ = Z−s = 9−4 = 5.
Table 2.7 lists the effective nuclear charges for an electron in the outermost shell of atoms

from hydrogen H to argon Ar, which are estimated on the basis of the above rules for screening
constants. Features (1) ∼ (5) found for the periodicity in ionization energies can now be discussed
in terms of the effective nuclear charges listed in the Table. Since ionization energies increase,
associated with the increase of the attractive force by the nucleus, there should be the following
two tendencies.

(Tendency 1): Ionization energies increase with the increase of the effective nuclear charge,
because of the dependence of the Coulomb force on the electric charge.

(Tendency 2): Ionization energies decrease with the electron shell becoming more outer, because
of the dependence of the Coulomb force on the distance.

Within a row in the periodic Table, valence electrons belong to the same electron shell, and
effective nucleus charges increase on going from the left to the right. It follows that Tendency 1
explains the Feature 3 that along the same row ionization energies increase from the left to the
right. On going from the right end to the top of the next row, the electron shell changes to the outer
one(Tendency 2) associated with the sudden drop of the effective nuclear charge(Tendency 1), and
therefore these tendencies explain the maximum at the right end(Feature 1) and the minimum at
the left end(Feature 2). Among the same group effective nuclear charges are the same except for
a change between He and Ne in the rare gas atoms, and the outer electron shell contributes to
the lower elements. It follows that the lower rows give the lower ionization energies(Feature 5).
In the change between He and Ne, it is difficult to guess the relative order since Tendency 1 and
Tendency 2 work oppositely. Experimental values show a distinct decrease from He to Ne, and
this indicates that Tendency 2, the effect of the distances from K shell to L shell, is much more
important to the magnitude of the ionization energies. This effect can also be understood for a
large drop of the ionization energies from 13.6 eV (H) to 5.4 eV (Li) in spite of the same effective
nuclear charge of the unity.

Feature 4 for experimental values of ionization energies includes rather fine changes, and it
cannot be explained only from Tendency 1 and Tendency 2. The change from the group 2 to the
group 13 is due to the change of electron subshells from ns to np. An electron in an s orbital has the
higher probability of approaching to the nucleus than an electron in a p orbital. Since the potential
energy of Coulombic interactions is proportional to the inverse of the distance, behavior around
the nucleus is most effective. Thus, the screening effects of s electrons are much smaller than those
of p electrons. It follows that the effective nuclear charge for s electrons become larger than those
for p electrons. This effect explains the difference of the ionization energies on going from the
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Table 2.7: Effective nuclear charges for an electron in the outermost electron shell

H He
1.00 1.67
Li Be B C N O F Ne

1.00 1.67 2.33 3.00 3.67 4.33 5.00 5.67
Na Mg Al Si P S Cl Ar
1.00 1.67 2.33 3.00 3.67 4.33 5.00 5.67

group 2 to the group 13. The change from the group 15 to the group 16 can be understood clearly
when electron configurations of N and O atoms are compared in detail. N has a configuration of
[He](2s)2(2px)1(2py)1(2pz)1, while O has a configuration of [He](2s)2(2px)2(2py)1(2pz)1. In an
O atom, an electron is added to the same 2p orbital, which causes the larger electron repulsion
to increase the energy of the electron in the outermost electron shell, and hence the ionization
energy decreases.

2.6.4 Effective nuclear charge and electron affinity

Let us study the periodicity in electron affinities of atoms on the basis of the effective nuclear
charges. Since the electron affinity equals the energy to remove an additional electron, we consider
the effective nuclear charge for an electron in the outermost electron shell in the mononegative
ion. For a 2p electron of the F− ion (Z = 9) as an example, the electron configuration of the F−

ion is given by
(1s)2(2s)2(2p)6

There are two 1s electrons in the inner side of the selected 2p electron, and thus their screening
effects amount to 1× 2 from the rule (5). Electrons in the same group of the selected 2p electron
are seven altogether, two 2s electrons and 6-1=5 2p electrons, which leads to a contribution of 1

3×7
as a whole from the rule (4). It follows that the screening constant s becomes s = 1× 2 + 1

3 × 7 =
13
3 = 4.33. Thus, the effective nucleus charge Z is estimated as Z = Z − s = 9− 13

3 = 14
3 = 4.67.

If a negative ion is formed for a Ne atom with an atomic number of Z = 10, the outermost
electron of Ne− is in a 3s orbital. The screening constant for this 3s electron becomes s = 10,
since the number of the inner electrons are ten. Therefore, the effective nuclear charge becomes
Z = 10− 10 = 0.

Table 2.8 lists effective nuclear charges for an electron in the outermost shell of mononegative
ion from hydrogen H to argon Ar.

Table 2.8: Effective nuclear charges for an electron in the outermost electron shell in the mononeg-
ative ion

H He
0.67 0.00
Li Be B C N O F Ne

0.67 1.33 2.00 2.67 3.33 4.00 4.67 0.00
Na Mg Al Si P S Cl Ar
0.67 1.33 2.00 2.67 3.33 4.00 4.67 0.00

Although the periodicity of the effective nuclear charges for mononegative ions are similar to
those for neutral atoms, positions of the minima and maxima are displaced to the lower atomic
numbers by one, respectively. It follows that electron affinities give their maxima at halogen
atoms and their minima at rare gas atoms. Small maxima and minima as Feature 4 in ionization
energies are also found at displaced positions to the left by one; at the groups 2 and 15, the values
become smaller with respect to the atoms on their left.
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2.7 Excited atoms and spectral terms

In a hydrogenic atom, states of n ≥ 2 are called excited states. Atoms in excited states with
excess energies larger than the energy of the ground state(n = 1) are called excited atoms. Excited
atoms may be formed by excess energies of chemical reactions in a flame or discharge. Contrary to
hydrogenic atoms, electron configurations of excited atoms are complicated in general, since there
are two or more electrons. Now, let us study the excited-state wavefunctions of a helium atom as
a typical example for systems with many electrons. Then, we will also study spectral terms which
are very important in spectroscopic classification of energy levels as well as their relationship with
various angular momenta.

2.7.1 The ground state of a helium atom

As has been already studied, the electron configuration of the ground-state helium atom is (1s)2.
The corresponding determinant wave function of this configuration is given by

Ψ(1, 2) =
1√
2

∣∣∣∣
ψ1(1) ψ2(1)
ψ1(2) ψ2(2)

∣∣∣∣ (2.67)

Here, electron coordinates are denoted simply by their number 1 or 2 in place of writing q1 or q2.
ψ1 and ψ2 are orbital functions of electrons including their spins, and they are constructed from
a combination of orbital functions of spatial coordinates φ1s and spin functions α or β.

ψ1 = φ1s · α (2.68)
ψ2 = φ1s · β (2.69)

Using these equations and expanding the above determinant, we obtain the following formula.

Ψ(1, 2) = φ1s(1)φ1s(2)
{α(1)β(2)− β(1)α(2)}√

2
(2.70)

φ1s(1)φ1s(2) in this formula is symmetric with respect to the permutation of the electrons, while
the inside of { } depending on the spins is antisymmetric with respect to the permutation of
the electrons. It follows that as a whole this formula is symmetric(+1) × antisymmetric(−1) =
antisymmetric(−1).

2.7.2 Excited states of a helium atom

Now let us consider an electron configuration (1s)1(2s)1, in which an electron is excited to the
2s orbital from the 1s orbital. Including electron spins, we obtain the following four configurations
of (a)-(d) as shown in Fig.2.9.

Using spatial orbital functions φ1s and φ2s together with spin functions α, β, let us construct the
functions for two-electron systems. We obtain symmetric and antisymmetric functions as follows.

Figure 2.9: Electron configurations for (1s)1(2s)1
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The symmetric function for the spatial part is given by

Φ+ =
φ1s(1)φ2s(2) + φ2s(1)φ1s(2)√

2
(2.71)

and the antisymmetric function for the spatial part is given by

Φ− =
φ1s(1)φ2s(2)− φ2s(1)φ1s(2)√

2
(2.72)

There are three symmetric functions for the spin part as follows,

Γ1 = α(1)α(2) (2.73)
Γ2 = β(1)β(2) (2.74)

Γ3 =
α(1)β(2) + β(1)α(2)√

2
(2.75)

and the antisymmetric spin function is given by

Γ4 =
α(1)β(2)− β(1)α(2)√

2
(2.76)

Combinations of these functions lead to the following antisymmetric functions.
For the symmetric spatial function, there is only one antisymmetric spin function, ant thus we

obtain

Φ1 =
φ1s(1)φ2s(2) + φ2s(1)φ1s(2)√

2
· α(1)β(2)− β(1)α(2)√

2
(2.77)

The excited state represented by this equation is called a singlet state.
For the antisymmetric spatial function, there are three symmetric spin functions to yield the

following three combinations of antisymmetric functions.

Φ2 =
φ1s(1)φ2s(2)− φ2s(1)φ1s(2)√

2
· α(1)α(2) (2.78)

Φ3 =
φ1s(1)φ2s(2)− φ2s(1)φ1s(2)√

2
· β(1)β(2) (2.79)

Φ4 =
φ1s(1)φ2s(2)− φ2s(1)φ1s(2)√

2
· α(1)β(2) + β(1)α(2)√

2
(2.80)

Excited states represented by these functions are called triplet states. Experiments show that the
triplet sates are more stable with the lower energies than the singlet state. This can be confirmed
by theoretical calculations of expectation values. Energies for Φ2,Φ3,Φ4 are the same, and they
are triply degenerate states.

2.7.3 Angular momenta and spectral terms for many electron systems

In order to understand the excited states of atoms, angular momenta need to be studied in detail.
As studied in section 1.13, the angular momentum is a vector with a magnitude and direction.
The angular momentum of a many-electron system is given as a vector summation of individual
angular momenta of the electrons and called the resultant angular momentum. Construction of
such summations can be made for the orbital angular momentum l̂i, the spin angular momentum
ŝi, and the total angular momentum of their sum ĵi = l̂i + ŝi. Thus, the resultant orbital angular
momentum L̂, the resultant spin angular momentum Ŝ, and the resultant total angular momentum
Ĵ are defined by the following equations.

L̂ =
∑

i

l̂i (2.81)

Ŝ =
∑

i

ŝi (2.82)

Ĵ =
∑

i

ĵi (2.83)
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Since ĵi = l̂i + ŝi, we obtain Ĵ = L̂+ Ŝ.
The three types of angular momenta for an electron satisfy the respective eigen equations as

follows.

l̂2Γ = l(l + 1)~2Γ (2.84)

l̂zΓ = ml~Γ (2.85)
ŝ2Γ = s(s+ 1)~2Γ (2.86)
ŝzΓ = ms~Γ (2.87)
ĵ2Γ = j(j + 1)~2Γ (2.88)
ĵzΓ = mj~Γ (2.89)

The subscript i should be attached to both of the operators and the quantum numbers in order
to denote the i-th electron. The quantum number m for the component should have respective
subscripts specifying l, s, j.

The resultant angular momenta introduced above should also satisfy similar eigen equations as
follows.

L̂2Γ = L(L+ 1)~2Γ (2.90)
L̂zΓ = ML~Γ (2.91)
Ŝ2Γ = S(S + 1)~2Γ (2.92)
ŜzΓ = MS~Γ (2.93)
Ĵ2Γ = J(J + 1)~2Γ (2.94)
ĴzΓ = MJ~Γ (2.95)

L, S, J are quantum numbers corresponding to the operators of the squares, and ML,MS ,MJ are
quantum numbers corresponding to their components. ML,MS ,MJ are equal to summations of
the contributions due to individual electrons.

ML =
∑

i

(ml)i (2.96)

MS =
∑

i

(ms)i (2.97)

MJ =
∑

i

(mj)i (2.98)

Using quantum numbers for the resultant angular momenta L, S, J and the principal quantum
number n, atomic energy levels are represented by the following symbol.

n2S+1{L}J (2.99)

This symbol is useful and important, especially in atomic spectroscopy, and is called a spectral
term. n is the maximum value among the principal quantum numbers of the electrons, and this
value is placed on the top. For the symbol {L}, capital letters of S,P,D,F,G,H are assigned with
respect to the value of L=0,1,2,3,4,5, respectively. 2S + 1 is called the spin multiplicity, and its

L 0 1 2 3 4 5
{L} S P D F G H

value calculated from the value of S is attached to the left shoulder of a letter such as S and P
corresponding to the symbol {L}; the superscript for the letter of {L} becomes 3 for triplet and
1 for singlet. The value of J is attached as a subscript to the right side of the letter of {L}. n
and J are often omitted for abbreviation unless they are necessary.
L̂ and Ŝ are commutable with Ĥ, the Hamiltonian operator for a many electron atom given by

eq.(2.31). Therefore, energy levels corresponding to spectral terms with the same combinations
of L and S and the same electron configurations, which are called LS terms, are identical and
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degenerate. For such degenerate cases, the right subscript J may be omitted, since they are
not important. However, experiments sometimes shows plitting of LS terms. One of the causes
is spin-orbit interactions, which yield splitting proportional to the fourth power of the atomic
number Z. Thus, the effect becomes significant for heavy atoms. On the other hand, splitting
due to external magnetic fields is called the Zeeman effect.

In the case of hydrogenic atoms, it is easy to obtain spectral terms, since the system has only
one electron. For example, let us consider a state of one 2p electron. Because of a 2p electron,
n = 2, and s = 1

2 with ms = ± 1
2 . For a single electron system, Ms = ms, and thus S = 1

2 leading
to the spin multiplicity 2S+ 1 = 2× (1/2) + 1 = 2, which is called a doublet. Similarly, Ml = ml,
and thus L = 1 corresponding to the letter P for the symbol {L}. In order to determine the
quantity of J , we need to know the rule for the permitted values of coupled angular momenta.

[The rule for permitted values of coupled angular momenta]
We introduce a coupled angular momentum of Ĵ = Ĵ1 + Ĵ2, where Ĵ1 and Ĵ2 are both angu-

lar momenta commutable with each other. Using quantum numbers J1 and J2 for Ĵ1 and Ĵ2,
permitted values of the quantum number J for the square of Ĵ are as follows.

J = J1 + J2, J1 + J2 − 1, · · · , |J1 − J2| (2.100)

Since Ĵ is a coupled vector of L̂ and Ŝ, the magnitude of the coupled angular momentum Ĵ has
a value between the maximum of L+S and the minimum of |L−S|. In the case of one 2p electron,
L = 1 and S = 1

2 , and thus the possible cases are J = 1 + 1/2 = 3/2 or J = 1 − 1/2 = 1/2. It
follows that the spectral term for (2p)1 are given by

22P3/2 and 22P1/2

These two terms have the same combination of L and S, and they are degenerate, if the spin orbit
interactions are negligible. In the case of a hydrogen atom, the splitting due to the spin orbit
interactions are very small, and 2P1/2 is only 0.365 cm−1 lower than the other term.

Example 2.5 Verify that spin functions Γ1 ∼ Γ4 for a two-electron system(equations(2.73)-
(2.76)) are eigen functions of the z-component operator of the resultant spin angular momentum
Ŝz, and obtain individual values of Ms.

(Solution) First derive equations in the form of ŜzΓ = MS~Γ, and second obtain values of Ms.
(1) Γ1 = α(1)α(2)

ŜzΓ1 = (ŝz1 + ŝz2)α(1)α(2) = ŝz1α(1)α(2) + ŝz2α(1)α(2)

= {ŝz1α(1)}α(2) + α(1){ŝz2α(2)} =
1
2
~α(1)α(2) + α(1)

1
2
~α(2)

=
(

1
2

+
1
2

)
~α(1)α(2) = ~Γ1

Thus, Γ1 is an eigenfunction of Ŝz, and the quantum number MS = 1.
(2) Γ2 = β(1)β(2)

ŜzΓ2 = (ŝz1 + ŝz2)β(1)β(2) = {ŝz1β(1)}β(2) + β(1){ŝz2β(2)}
= −1

2
~β(1)β(2) + β(1)

(
−1

2

)
~β(2) =

(
−1

2
− 1

2

)
~β(1)β(2) = −~Γ2

Thus, Γ2 is an eigenfunction of Ŝz, and the quantum number MS = −1.
(3) Γ3 = {α(1)β(2) + β(1)α(2)}/√2

ŜzΓ3 =
(

1
2
− 1

2

)
~Γ3 = 0~Γ3

Thus, Γ3 is an eigenfunction of Ŝz, and the quantum number MS = 0.
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(4) Γ4 = {α(1)β(2)− β(1)α(2)}/√2

ŜzΓ4 =
(

1
2
− 1

2

)
~Γ4 = 0~Γ4

Thus, Γ4 is an eigenfunction of Ŝz, and the quantum number MS = 0.

Next, let us study the spectral terms of excited states (1s)1(2s)1 for a He atom. The largest
principal quantum number is for a 2s electron, and thus n = 2.Since all electrons are in s orbitals
with ml = 0, then L = 0 + 0 = 0. The value of S depends on the spin multiplicity, singlet or
triplet. From Example 2.5, the only possible value for MS is 0, and this leads to S = 0 and
2S + 1 = 0 + 1 = 1. From S = 0 and L = 0, J = 0 + 0 = 0. It follows that the spectral term for
the singlet excited-state is given by 21S0.

For triplet excited-states, there are three values of MS , 1 for Γ1, 0 for Γ3, and -1 for Γ2, and
thus S = 1. Noting L = 0, we find J = 1 + 0 = 1− 0 = 1. It follows that the spectral term of the
triplet excited states is given by 23S1.

The following rules are very useful for obtaining spectral terms.

[How to obtain spectral terms]

(1) When a subshell is fully occupied by electrons, those electrons in the subshell may be
disregarded, since contributions of the subshell to MS and ML are vanishing. For example,
in order to obtain the spectral term for the ground-state of Li (1s)2(2s)1, we may only deal
with (2s)1 neglecting (1s)2.

(2) When a subshell with an azimuthal quantum number of l is fully occupied by electrons,
the configuration can be expressed as (n{l})(4l+2), where l = 0, 1, 2 correspond to s, p, d,
respectively. A pair of incompletely occupied subshells, (n{l})(4l+2−k) and (n{l})(k), give
the same spectral terms. For example, (2p)5 and (2p)1 give the same set of spectral terms,
22P3/2 and 22P1/2.

Exercises

2.1 Calculate the energy of a photon emitted in a transition of an electron in the monopositive
helium ion from an excited state of principal quantum number n = 2 to the ground state n = 1.

2.2 Show that an anticlockwise rotation of the dx2−y2 orbital by 45 degrees in the x–y plane
leads to a dxy orbital. Verify that the dz2 orbital is made of a linear combination of dy2−z2 and
dz2−x2 orbitals, which are equivalent to dx2−y2 orbital.

2.3 Calculate the distances where the radial distribution functions for the 1s and 2p orbitals of
a hydrogen atom are maxima, and compare the results with the Bohr radius.

2.4 Construct the wave function with a Slater determinant for an electron configuration of He
in which one electron occupies the 1s orbital with α spin and the other electron occupies the 2s
orbital with α spin. Show that for this wave function the probability of finding two electrons at
identical spatial coordinates is vanishing (the probability of finding electrons occupying different
spatial orbitals with the same spin at the same place is vanishing).

2.5 Construct the electron configuration of an iodide ion (I−).
2.6 Which group in the periodic table gives the maximum for the energies (the second ionization

energy) required for producing a dipositive ion from a monopositive ion, when the energies are
compared as functions of the atomic numbers? Which group gives the minimum? Answer these
questions by considering the effective nuclear charges in the range of atomic numbers from 2 to
18.

2.7 Determine all wavefunctions for excited states of He in which one of 1s electrons is excited
to a 2p orbital. Determine their spectral terms.
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Basic methods of approximation

Except for a very simple case such as a hydrogen atom, the fundamental equation of quantum
mechanics cannot be solved rigorously. It follows that approximation mathods should be used to
apply quantum mechanics to various problems. Methods to be used as well as the accuracies to
be required depend on the problems to be solved.

In this chapter, we will study most imortant and useful methods for approximation.

3.1 Perturbation theory

Even if an equation is difficult to solve directly, true solutions can be deduced from approximate
solutions of a slightly simplified equation, provided that the approximate solutions are known or
can be obtained easily. Such a technique, based on perturbation theory, is often used for calcula-
tions in quantum theory. Perturbation theory is applied to many problems for estimating changes
of energy levels and wave functions associated with additional variations due to interparticle in-
teraction as well as magnetic or electric fields.

3.1.1 Perturbation theory

In the equation of quantum mechanics, an additional term Ĥ ′ included in the Hamiltonian
operator Ĥ is called a perturbation. A system without perturbation is called the unperturbed
system. Assuming that solutions {Ei◦, Ψi

◦} of the eigen equation Ĥ0Ψ◦ = EΨ◦ for the unper-
turbed Hamiltonian Ĥ0 = Ĥ − Ĥ ′ are known, let us try to obtain solutions {En, Ψn} of the eigen
equation ĤΨ = EΨ for the Hamiltonian including the perturbation Ĥ = Ĥ0 + Ĥ ′.

First, we introduce a perturbation Ĥ ′ = λV̂ with a parameter λ indicating the magnitude of
the perturbation. Next, we expand Ψn in terms of solutions for the unperturbed system {Ψi

◦}.

Ψn =
∑

i

cinΨi
◦ (3.1)

Insertion of Ĥ = Ĥ0 + λV̂ into the eigen equation of Ĥ, followed by using the above expanded
equation for Ψn and the eigen equation of Ĥ0, then results in

∑

i

cin{Ei◦ + λV̂ }Ψi
◦ = En

∑

i

cinΨi
◦ (3.2)

Noting that an orthonormal system can be used in general for {Ψi
◦}, multiplication through from

the left by Ψj
◦∗ and integration yield the following equation.

cjnEj
◦ + λ

∑

i

cinVji = cjnEn (3.3)

71
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Vji is an integral for all coordinates represented by q, which is give by the following equation.

Vji =
∫

Ψj
◦∗V̂Ψi

◦dq (3.4)

This quantity Vji can be evaluated when {Ψi
◦} as well as the operator representing the perturba-

tion V̂ are given. λVji is denoted by Hji
′ and is called the ji-matrix element of the perturbation.

Hji
′ =

∫
Ψj
◦∗Ĥ ′Ψi

◦dq

=
∫

Ψj
◦∗λV̂Ψi

◦dq

= λVji (3.5)

This equation will be used for the formula of perturbation theory.
The equation (3.3) is an equation for obtaining energy eigen values En and {cin} determining

the wave functions Ψn. In order to solve this equation approximately, let us expand cin and En
into power series of λ.

cin = cin
◦ + λcin

′ + λ2cin
′′ + · · · (3.6)

En = En
◦ + λEn

′ + λ2En
′′ + · · · (3.7)

When En
◦ has no degeneracy, we obtain cin

◦ = δin( 1 for i = n, 0 for i 6= n ), since for λ → 0
Ψn → Ψn

◦ associated with En → En
◦. Therefore, the first terms in the expansion correspond

to the unperturbed system, and the second terms are corrections to the perturbation. Inserting
the above expansions eqs.(3.6)(3.7) into eq.(3.3), followed by arranging the lower order terms of
λ from the left, we obtain

λ(Vnn − En′) + λ2

(∑

i

Vnicin
′ − cnn′En′ − En′′

)
+ · · · = 0 (3.8)

By neglecting the second and the higher order terms, we obtain the following result for the first
order correction of the energy.

En
′ = Vnn (3.9)

It follows that the formula for the energy to the first order of the perturbation is given by

En ; En◦ + λVnn = En
◦ +H ′nn

=
∫

Ψn
◦∗{Ĥ0 + Ĥ ′}Ψn

◦dq

=
∫

Ψn
◦∗ĤΨn

◦dq (3.10)

The last equation indicates that the expectation value of the Hamiltonian operator including the
perturbation in terms of unperturbed wave functions Ψn

◦ yields the energy to the first order of
the perturbation.

By considering the second order contributions of λ, we obtain the following equation.

En
′′ =

∑

i (i 6=n)

Vnicin
′ (3.11)

From the first order terms of λ in eq.(3.3) with insertion of expanded expressions, cin′ (i 6= n) can
be written as follows.

cin
′ =

Vin
En
◦ − Ei◦ (i 6= n) (3.12)

Using this expression for eq.(3.11) we write

En
′′ =

∑

i (i 6=n)

VniVin
En
◦ − Ei◦ (3.13)
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Using the above results, we obtain the following formulas for approximations of {En,Ψn} to the
second order of the perturbation.

En ; En◦ +Hnn
′ +

∑

i (i 6=n)

Hni
′Hin

′

En
◦ − Ei◦ (3.14)

Ψn ; Ψn
◦ +

∑

i (i 6=n)

(
Hin

′

En
◦ − Ei◦

)
Ψi
◦ (3.15)

Example 3.1 Verify that second-order perturbation corrections of the energy due to the lower
energy states are always positive, whereas those due to the higher energy states are always nega-
tive. It should be noted that Hni

′ = Hin
′∗, where ∗ denotes the complex conjugate (eq.(1.37)).

(Solution) The second-order perturbation corrections for the energy of the n-th state is expressed
by

En(2) =
∑

i (i 6=n)

Hni
′Hin

′

En
◦ − Ei◦

Using Hni
′ = Hin

′∗ and noting |Hin
′|2 > 0, we obtain

Hni
′Hin

′ = Hin
′∗Hin

′ = |Hin
′|2 > 0

This means that the numerators in the expression for En(2) are always positive. It follows that
contributions due to the lower energy states i(Ei◦ < En

◦) are always positive.

Hni
′Hin

′

En
◦ − Ei◦ > 0

Also, contributions due to the higher energy states i(Ei◦ > En
◦) are always negative.

Hni
′Hin

′

En
◦ − Ei◦ < 0

3.1.2 Perturbation theory for degenerate states

Now let us consider a system with f -fold degeneracy in the energy E◦. The degenerate states
are numbered from 1 to f , and energies of these degenerate states are denoted as E1

◦ = E2
◦ =

· · · = Ef
◦. For any other state a number n larger than f is assigned. For the energy levels of

n > f , {En,Ψn} are obtained by the method studied above. The energy levels from 1 to f should

be treated differently, noting that En → En
◦ and Ψn →

f∑
i=1

cin
◦Ψi
◦, associated with λ → 0.

Insertion of equations (3.6) and (3.7) into eq.(3.3), followed by neglecting higher order terms than
the second order of λ, results in the following a set of simultaneous equations.

f∑

i=1

(Vji − δjiEn′)cin◦ = 0 (3.16)

where j and n are arbitrary numbers from 1 to f .
According to linear algebra, the necessary and sufficient condition for the existence of nontrivial

solutions other than all {cin◦} to be vanishing is that the determinant of the matrix with ji element
corresponding to the inside of ( ) in eq.(3.16) should be zero.

∣∣∣∣∣∣∣∣∣∣∣

V11 − En′ V12 V13 · · · V1f

V21 V22 − En′ V23 · · · V2f

V31 V32 V33 − En′ · · · V3f

...
...

...
...

Vf1 Vf2 Vf3 · · · Vff − En′

∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.17)
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By solving this algebraic equation of the order f with respect to En′, f solutions of E1
′, E2

′,· · · , Ef ′
can be obtained. Thus, the energy levels shifted by the perturbation can be determined as follows.

En ; En◦ + λEn
′ (1 5 n 5 f) (3.18)

{cin◦} can also be obtained from solutions of the simultaneous equations of (3.16), provided that
a value of {En′} from eq.(3.17) is inserted in place of En′ in ( ). It should be noted that the
following equation for the normalization condition for {Ψn}.

f∑

i=1

|cin◦|2 = 1 (1 5 n 5 f) (3.19)

3.1.3 Modification of states by perturbation

Modification of energy levels due to additional actions can be observed as spectral changes for
transitions related to the levels. We will see some typical examples below.
[The Zeeman effect]

When magnetic fields are applied, doublet or triplet states may exhibit the splitting of degen-
erate energy levels. Phenomena of the splitting in spectral lines under magnetic fields are called
the Zeeman effect. The extent of the splitting of spectral lines depends on the strength of the
applied field. Fig.3.1 shows an example of the Zeeman effect on the 1D2–1P1 transition giving red
emission (6438.47 Å) from a cadmium atom. One line without a field splits into three lines under
the magnetic field.

Figure 3.1: An example of the Zeeman effect. The splitting of spectral terms under a magnetic
field

[The Stark effect]
Emission spectra from a hydrogen atom in a strong electric field give splitting of spectral lines.

The splitting of spectral lines under an electric field is called the Stark effect. The Stark effect is
observed for the following cases.
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(1) At least one of the energy levels related to the transition is degenerate, and the degeneracy is
lifted by the action of the electric field.

(2) Polar molecules with various orientation may have different energies under a strong electric
field, and transition energies may also be modified depending on the molecular orientation.

The latter type of the Stark effect does not require the degeneracy of the levels. The extent of
the splitting in the Stark effect depends on the strength of the applied electric field.
[The splitting of d levels]

Levels of d electrons in a metal atom or its ion (M) exhibit varieties of split patterns under the
field (ligand field or crystal field) of the surrounding ligands (L), depending on the symmetry and
the field strengths (Fig.3.2). Subtle changes in color for transition metal ions and their compounds
are related to the variations of split patterns of d levels.

Figure 3.2: The ligand field splitting of d levels. M: central metal, L: ligand.

[Spin-orbit coupling effects]
As studied in section 2.7, levels with the same set of L and S are degenerate, when the spin-orbit

coupling can be disregarded. If the spin-orbit coupling is significant, especially for atoms with
large atomic numbers to which relativistic effects cannot be neglected, the degeneracy is lifted to
give splitting of spectral lines. Multiplet states such as doublets and triplets can be observed as
split states even without external fields, and such a phenomenon is called the zero-field splitting
in contrast to the Zeeman effect.
[The transition probability and spectral selection rules]

In addition to the above examples, rapid variations such as actions due to electromagnetic waves
can also be treated as a perturbation. Since systems under actions of electromagnetic waves are
not in stationary states, theoretical treatments of unstationary states need to be made. Although
details will not be mentioned in this book, an extension of perturbation theory to unstationary
states makes it possible to evaluate the transition probabilities between stationary states. Looking
into the transition probabilities reveals that transitions do not necessarily occur between any pair
of states. There are certain rules which lead to either allowed transitions or forbidden transitions.

For example, the following selection rules are well known as conditions in order to observe light
absorption or emission by atoms.

∆L = 0 or ± 1 (The selection rule for orbital angular momenta)
∆J = 0 or ± 1 (The selection rule for total angular momenta) (3.20)
∆S = 0 (The selection rule for spin angular momenta)
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Exceptionally, ∆L = 0 should be omitted between a pair of states with L = 0, and also ∆J =
0 should be omitted between a pair of states with J = 0. When transitions do not satisfy
the conditions in eq.(3.20), the corresponding spectral lines cannot be observed or appear with
extremely weak intensities, even if they could be observed. The last rule of ∆S = 0, forbidding
transitions between levels with different spin-multiplicity becomes to be less effective with the
increase of the atomic number, since the spin-orbit coupling becomes to be strong for heavy
atoms.

As can be seen from Fig.3.1, among transitions between split sublevels due to the difference of
the MJ values, transitions of ∆MJ = 0 or ±1 are only allowed.

3.2 The variation method

Besides the perturbation method studied in the previous section, another approach called the
variation method has been used for applying quantum mechanics to various problems. Especially
in recent years, development of modern computers has facilitated valuable usage of calculation
methods based on the variation method. In this section we will study the variation method. Now,
let us start with the variation principle.

3.2.1 The variation principle

A trial expectation value with an arbitrary function Φ is introduced by the following equation.

ε[Φ] =
∫

Φ∗ĤΦdq∫
Φ∗Φdq

. (3.21)

The value of ε[Φ] which depends on the choice of Φ is not smaller than the lowest eigen value E0

for the eigen equation ĤΨ = EΨ.

ε[Φ] = E0 (The equality holds only if ĤΦ = E0Φ) (3.22)

The equality of this formula holds only for a special case where ε[Φ] is an eigen function belonging
to E0. This formula of eq.(3.22) is called the variation principle.

[Proof]
Φ can be expanded in terms of eigen functions {Ψi} for Ĥ as Φ =

∑
i

ciΨi. Calculating ε[Φ]−E0

with the expansion of Φ and using ĤΨi = EiΨi as well as the normality of {Ψi}, we obtain

ε[Φ]− E0 =

∑
i

(Ei − E0)|ci|2
∫ |Ψi|2dq

∑
i

|ci|2
∫ |Ψi|2dq

= 0.

The last inequality is derived from the followings; E0 is the lowest eigen value, and an absolute
value cannot be negative. Since {Ψi} cannot be zero for all possible cases of the variables, the
equality requires ci = 0 for all {Ψi} having an energy Ei larger than E0. It follows that a nonzero
value for the coefficient ci in the expansion of Φ in terms of {Ψi} is allowed only if Ei = E0. Only
in this case, ĤΦ = E0Φ holds, and Φ becomes the eigen function belonging to the eigen value
E0. Conversely, if Φ is an eigen function of E0 satisfying ĤΦ = E0Φ, the numerator of eq.(3.21)
becomes

∫
Φ∗E0Φdq = E0

∫
Φ∗Φdq, which leads to ε[Φ] = E0. Therefore, the equality holds only

if ĤΦ = E0Φ, which is the case that Φ is the eigen function of the lowest eigen value E0.

The variation principle gives a guide to obtain the wave function and the eigen value of the
ground-state. For this purpose, Φ should be determined so that the value of ε[Φ] using Φ may
become the minimum. The resultant Φ is the eigen function of the lowest eigen value E0, the wave
function of the ground-state. It follows that this Φ yields ε[Φ] corresponding to the ground-state
energy value of E0.
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3.2.2 The variation method using a linear-combination approximation
(Ritz’s variation method)

It is difficult to find out Φ minimizing ε[Φ] on the basis of the above variation principle. For
various functions φ1, φ2, φ3, · · · , we need to calculate the respective value of ε[φi], and we should
find out a function giving the minimum. It is however impossible to test all functions. Even if
several combinations of E and Ψ satisfying ĤΨ = EΨ, the lowest eigen value among them is not
necessarily the true minimum eigen value. Therefore, a compromise of finite numbers of trials
giving up infinite repetitions would lead to unsuccessful results unless fortunate choices happened
to be made.

Now, let us try to test a wide range of functions more efficiently. A linear combination of n
functions φ1, φ2, φ3, · · · , φn

Φ = c1φ1 + c2φ2 + · · ·+ cnφn (3.23)

can be used to test infinite numbers of trial functions expressed by eq.(3.23), provided that ex-
pansion coefficients {ci} as adjustable variables are continuously varied. Although there is a
restriction due to the selection of {φi}, we can obtain the best result for testing all of arbitrary
linear combinations of {φi} as well as individual functions from φ1 to φn. In this way, the varia-
tion principle is used to determine a series of {ci} so that {ci} may lead to the minimum of ε[Φ].
This procedure is called the variation method using a linear-combination approximation (Ritz’s
variation method).

Insertion of eq.(3.23) into the definition of ε[Φ] leads to the following equation.

ε[Φ] =

∑
i

∑
j

ci
∗Hijcj

∑
i

∑
j

ci∗Sijcj
(3.24)

In this expression summations for i and j should be taken from 1 to n. Hij and Sij are elements
of n× n matrices and defined by the following integrals.

Hij =
∫
φi
∗Ĥφjdq (3.25)

Sij =
∫
φi
∗φjdq (3.26)

Sij is called an overlap integral between φi and φj .
Based on the variation principle, ε[Φ] should be minimized by changing {ci}, which are the

coefficients introduced in the definition of Φ. Since ci and c∗i are complex conjugates with each
other, we may take one of them as an independent variable. Hence, let us obtain the condition
for ∂ε/∂ci∗ = 0. For convenience, we rewrite eq.(3.24) as

ε[Φ]
∑

i

∑

j

ci
∗Sijcj =

∑

i

∑

j

ci
∗Hijcj (3.27)

Differentiation of the both sides of this equation with respect to ci∗ gives

∂ε

∂ci∗
∑

i

∑

j

ci
∗Sijcj + ε

∑

j

Sijcj =
∑

j

Hijcj (3.28)

Using the condition of ∂ε/∂ci∗ = 0, we obtain
∑

j

(Hij − εSij)cj = 0 (i = 1, 2, · · · , n) (3.29)

This expression is a set of simultaneous equations for {cj}, which is similar to eq.(3.16) in the
previous section.

If all coefficients from c1 to cn are zero, then they satisfy eq.(3.29). However, this set of solutions
leads to an identity of Φ = 0, which is physically of no meaning. In order to obtain nontrivial
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solutions other than all {cj} to be vanishing, the following determinant should be zero.
∣∣∣∣∣∣∣∣∣∣∣∣

H11 − εS11 H12 − εS12 · · · H1n − εS1n

H21 − εS21 H22 − εS22 · · · H2n − εS2n

...
...

...
...

...
...

Hn1 − εSn1 Hn2 − εSn2 · · · Hnn − εSnn

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.30)

The ij elements Aij of this determinant is derived from the coefficients of (Hij − εSij) = Aij in
the simultaneous equations (3.29). Eq.(3.30) is an algebraic equation of the order n for ε, and
it is called the secular equation. The secular equation is simply expression as |Hij − εSij | = 0,
in which only the ij element is written between a pair of vertical bars. ε1, ε2, · · · , εn(εi 5 εi+1)
are n solutions of this equation and approximate energy eigen values. The lowest eigen value
ε1 is the best approximation of the true ground-state energy within all possible ranges of the
linear combination for Φ in eq.(3.23). In comparison with true eigen values from the lower ones,
E1, E2, E3, · · · , the eigen values obtained by Ritz’s variation method satisfy the following relation.

Ek 5 εk (k = 1, 2, · · · , n) (3.31)

Therefore, εk (k = 2) is an approximate energy value for the k-th excited state.
Wave functions {Φk} corresponding to the approximate energy eigen values {εk} can be de-

termined by insertion of εk into the simultaneous equations (3.29), followed by obtaining {cj}.
It should be noted here that the normalization condition leads to the following equation to be
satisfied for {cj}. ∫

Φk∗Φkdq =
∑

i

∑

j

ci
∗cjSij = 1 (3.32)

Example 3.2 Calculate approximate energies and wave functions by applying Ritz’ variation
method to Φ = c1φ1 + c2φ2, provided that H11 = −12 eV, H22 = −6 eV, H12 = H21 =
−4 eV, S11 = S22 = 1, S12 = S21 = 0.

(Solution) Using the given conditions, the secular equation is expressed by
∣∣∣∣
−12− ε −4
−4 −6− ε

∣∣∣∣ = ε2 + 18ε+ 56 = (ε+ 14)(ε+ 4) = 0

The lower solution gives the ground-state energy of ε1 = −14 eV, and the higher one corresponds
to the excited-state energy of ε2 = −4 eV.

The wave function Φ can be obtained in the following way. Applying the given conditions to
the normalization condition of eq.(3.32),

|c1|2 + |c2|2 = 1 (1)

Simultaneous equations (3.29) for coefficients c1, c2 give

(H11 − ε)c1 +H12c2 = 0 (2)

Insertion of values for H11,H12 and ε1 into this equation (2) leads to

(−12 + 14)c1 + (−4)c2 = 0

This yields c1 = 2c2, and then eq.(1) gives c1 = 2/
√

5, c2 = 1/
√

5. Thus, we obtain the ground-
state wave function.

Φ1 =
1√
5

(2φ1 + φ2)

Next, insertion of ε2 into ε in eq.(2) leads to

(−12 + 4)c1 + (−4)c2 = 0

This yields 2c1 = −c2, and then eq.(1) gives c1 = 1/
√

5, c2 = −2/
√

5. Thus we obtain the
excited-state wave function.

Φ2 =
1√
5

(φ1 − 2φ2)
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3.3 The SCF method

As studied in section 2.4, wave functions for many electrons systems can be constructed with
orbital functions. The problem is how to determine orbital function for many electron systems.
In this section, we study a fundamental approach obtaining orbital functions on the basis of the
variation method.

The Hamiltonian operator for an n electron system is given by the following expression.

Ĥ =
n∑

i=1

ĥ(i) +
n∑

i>j

ĝ(i, j) (3.33)

Here, ĥ(i) and ĝ(i, j) are one and two electron operators, respectively. The indices i and j refer to
the respective electrons. A comparison of this equation with the formula (2.31) for many electron
system in section 2.3 leads to the following expressions for the above operators.

ĥ(i) = − ~
2

2m
∆i − Ze2

4πε0ri
(3.34)

ĝ(i, j) =
e2

4πε0rij
(3.35)

Orthonormal orbital functions including spins {ψi} can be determined from the following si-
multaneous equations derived from the minimization conditions for the expectation value of Ĥ by
a determinant wave function Ψ = |ψ1ψ2 · · ·ψn| composed of the orbital functions.

[
ĥ(i) +

∑

k

∫
ĝ(i, j)|ψk(j)|2dqj

]
ψi(i)−

∑

k

[∫
ĝ(i, j)ψk∗(j)ψi(j)dqj

]
ψk(i)

= εiψi(i) (i = 1, 2, · · · , n) (3.36)

The summation should be taken from 1 to n except for k = i. Eq.(3.36) is called the Hartree-Fock
equation, and solutions of this equation yield the orbital functions {ψi} and the orbital energies
{εi}.

A sophisticated approach needs to be used for solving eq.(3.36). First, we assume that an
approximate set of solutions (the 0-th approximation) for {ψi} is given. Replacement of ψk in the
left of eq.(3.36) by the 0-th approximation leads to a simple equation to be solved as follows.

F̂ψ = εψ (3.37)

Although the approximate solutions of {ψi} are included in the operator F̂ , {ψi} to be determined
are not included. It follows that eq.(3.37) can be solved as a normal eigen value equation. Although
the first solutions so obtained for {ψi} and {εi}, are approximate ones, they are expected to be
better than those of the initial guess. Next, we estimate the operator F̂ with the first solutions,
and then we solve eq.(3.37) again to obtain the second solutions. In such procedures, we improve
the solutions iteratively until discrepancies between the results and the assumptions will become
negligibly small. It is called self-consistent when the assumed ψ as an approximation becomes
consistent with the obtained ψ as a solution. In the convergent solutions, interactions between
electrons included in F̂ are the self-consistent field. Such a procedure obtaining solutions in an
iterative way is the SCF method, and the solutions are called SCF solutions. Orbital functions
determined by the SCF method are called SCF orbitals.

Construction of the determinant wave function with the lower-energy SCF orbitals, followed by
calculation of the expectation value of the Hamiltonian operator of eq.(3.33), yields an approx-
imation of the ground-state energy, which is called the SCF energy. The SCF energy ESCF is
expressed in terms of some integrals by the following equation.

ESCF =
∑

i

(h)i +
1
2

∑

i,j

{(J)ij − (K)ij} (3.38)
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The summation should be taken for all occupied orbitals. The integrals for the SCF orbitals
including spins are defined as follows.

(h)i =
∫
ψi
∗ĥ(i)ψidq

(J)ij =
∫
ψi
∗(1)ψj∗(2)ĝ(1, 2)ψi(1)ψj(2)dq1dq2

(K)ij =
∫
ψi
∗(1)ψj∗(2)ĝ(1, 2)ψj(1)ψi(2)dq1dq2

The SCF energy is expressed in terms of individual orbital energies {εi} as follows.

ESCF =
∑

i

εi − 1
2

∑

i,j

{(J)ij − (K)ij} (3.39)

This indicates that the SCF energy is not equal to the summation of the orbital energies. The
additional term is identical with the second term in eq.(3.38) except for the opposite signs. This
term is due to the interactions between electrons. The sum of orbital energies includes duplicated
contributions of interactions between electrons, since an interaction between a particular couple
of two electrons appears in both of the respective orbital energies of the pair of the electrons. It
follows that in eq.(3.39) the interactions between electrons multiplied by -1 are added to the sum
of the orbital energies. If the interactions between electrons can be neglected, the total energy
becomes the sum of individual orbital energies, and the situation is the same as the independent
particle model studied in section2.3.

A comparison of the SCF energy with the ground-state energy EG without including relativistic
effects such as the spin-orbit coupling leads to the following inequality.

EG 5 ESCF

The equality is only for one-electron systems such as hydrogenic atoms. The equality does not hold
for many electron systems. The difference of ESCF −EG = ECORR for many electron systems are
always positive. Its magnitude ECORRis called the electron correlation energy. Such a discrepancy
is due to the construction of the many-electron wave function from orbitals for independent motion
of electrons, which excludes effects of the electron correlation. The variation method as well as
the perturbation method may be used to consider electron correlation effects (see section 4.3). In
conclusion of this chapter, characteristic features for the perturbation method and the variation
method are listed in Table 3.1.

Table 3.1: Characteristic features for the perturbation method and the variation method

Perturbation method Variation method
Approach True solutions are guessed as

series expansions with unper-
turbed solutions, if they are
known.

Trial wave functions with ad-
justable parameters are as-
sumed and optimized to min-
imize the expectation value.

Feature If the perturbation is weak,
even the lower order expan-
sions give successful results.
When the perturbation is
strong, slow convergence
makes calculations of higher
order terms formidable.

Trial functions similar to the
true solution give excellent re-
sults. If the adjustable range of
trail functions is too large, cal-
culations become formidable.
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Exercises

3.1 Based on the variation principle, verify that the energy up to the first order of a perturbation
E(1) is higher than the true ground-state energy EG.

3.2 For a system of two levels, verify that the higher state goes up and that the lower state
comes down, by considering energy corrections due to the second order perturbation.

3.3 Applying Ritz’s variation method to Φ = c1φ1 + c2φ2, obtain approximate solutions for the
energies and the wave functions, using H11 = H22 = −6 eV, H12 = H21 = −3 eV, S11 = S22 =
1, S12 = S21 = 0.



Chapter 4

Methods for many-atom systems
and their applications

If atoms are solid balls, they do not bind with each other. Real atoms can produce chemical
bonds, and they can transfer electrons to yield ions. Ions can also bind with atoms. These binding
processes give complexes, clusters, polymers, and crystals. Combined systems of atoms and ions
are composed of nuclei and electrons, which interacts with each other by Coulomb forces.

In this chapter, we will study how nuclei and electrons form molecules, on the basis of quantum
mechanical treatments for diatomic and polyatomic systems.

4.1 Motion of electrons and nuclei

4.1.1 The Hamitonian operator for nuclei and electrons

Let us consider systems of nuclei and electrons. Such systems include molecules, ions, complexes,
polymers, and crystals, and all materials. In order to make quantum mechanical treatments, some
symbols need to be introduced. For systematic treatments, ZA and ZB denote atomic numbers
for the atoms A and B, and their distance is denoted by RAB, as shown in Fig.4.1. rij denotes
the distance between the electrons i and j, and RAi denotes the distance between the atom A
and the electron i. The Laplacian operators and masses for the atom A and the electron i are
expressed by ∆A, ∆i, MA, and m, respectively. Using these notations, the Hamiltonian operator
can be expressed as a summation of the following five terms.

Figure 4.1: A system of nuclei and electrons

82
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Ĥ = Kn +Ke + Unn + Une + Uee (4.1)

(Kinetic energies of the nuclei)Kn =
∑
A

(
− ~2

2MA

)
∆A (4.2)

(Kinetic energies of the elec-
trons)

Ke =
∑
i

(
− ~2

2m

)
∆i (4.3)

(Potential energies of interactions between the nuclei)

Unn =
∑

A>B

(
ZAZBe

2

4πε0RAB

)
(4.4)

(Potential energies of interactions between the nuclei and the electrons)

Une =
∑
A

∑
i

(
− ZAe

2

4πε0RAi

)
(4.5)

(Potential energies of interaction between the electrons)

Uee =
∑
i>j

(
e2

4πε0rij

)
(4.6)

The symbols A and i under Σ indicate that the summation should be taken for all atoms or
all electrons, respectively. The symbols A > B and i > j under Σ denote that the summations
should be taken for only one pair of nuclei or electrons without duplication.

The Hamiltonian operator given above can be applied to special systems such as a system of only
one nucleus as well as a system of only one electron. If there is only one nucleus, Unn is omitted,
and the summation for A has only one contribution of the nucleus. For only one electron, Uee is
omitted, and summations for i includes only one contribution due to the electron. Furthermore,
for no electrons Ke, Une, Uee are omitted, and for no nuclei Ke, Une, Uee are omitted. It follows
that Ĥ given above in eq.(4.1) can be applied to any system composed of arbitrary numbers of
nuclei and electrons.

When we do not care for the difference between nuclei and electrons, the Hamiltonian operator Ĥ
for a system including particles with masses MI ,MJ and electric charges QI , QJ can be expressed
much more simply by the following formula.

Ĥ =
∑

I

(
− ~2

2MI

)
∆I +

∑

I>J

(
QIQJ

4πε0RIJ

)
(4.7)

There are some reasons why in the above treatments we note the difference between nuclei and
electrons, as discussed below.

4.1.2 Separation of nuclear and electronic motions

When a force F acts on a body with a mass of M , the body undergoes an acceleration of
a = F/M . This is clear from Newton’s equation of motion, F = Ma. Now let us suppose that
forces of F act independently on two bodies with different masses of M and m. Magnitudes of
accelerations on these bodies are F/M and F/m, and their ratio becomes (F/M)/(F/m) = m/M .
If M is very large in comparison with m, this ratio becomes to be vanishing. Thus, the acceleration
on the heavy body (M ) can be neglected with respect to that for the light body (m). When
owing to the law of action and reaction a pair of forces of the same magnitude act on each of
two bodies with a very large mass ratio, the heavy body scarcely moves, whereas the light body
significantly moves. Thus, the motion of a heavy particle can be neglected in comparison with the
motion of a light particle. In other words, as long as the motion of light particles is concerned,
heavy particles can be fixed to the rest positions.

M. Born and J.B. Oppenheimer applied such an idea based on large mass ratios to systems
of nuclei and electrons, and in 1927 they introduced the adiabatic approximation or the Born-
Oppenheimer approximation in which nuclei are fixed when the electronic motion is considered.
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Under this approximation, we omit Kn from the complete Ĥ in the above expression, and the
following Hamiltonian Ĥe, called electronic Hamiltonian, is used instead.

Ĥe = Ke + Unn + Une + Uee (4.8)

Here, Unn may be omitted for problems dealing with the electronic motion, since it does not
contain electron coordinates. In order to discuss the stability of the system or forces acting on
nuclei, however, Unn would better be included in Ĥe.

Let us suppose that the eigen equation of Ĥe, that is the eigen equation for electrons Ĥeψ = uψ,
has been solved. In order to specify meanings of the coordinates clearly, nuclear and electronic
coordinates are represented by R and r, respectively. With these notations, the eigen equation
for electrons is expressed by

Ĥe(R, r)ψ(R, r) = u(R)ψ(R, r) (4.9)

We should note here that R represents parameters of the fixed nuclear coordinates. If R is
displaced, then Ĥe changes accordingly to yield modified eigen functions ψ and eigen values u.
Once ψ(R, r) is obtained, then we know probability distributions of finding electrons around the
fixed nuclei. Once u(R) is determined, we know the energy at the fixed nuclear configuration. The
functional values of u(R) depend on R. A decrease of u results in an energetically more stable
situation, and an increase of u brings the system unstable. It follows that u(R) is the potential
energy of nuclear motion, which changes depending on the relative positions of nuclei. This can
be seen from the meaning of the complete Hamiltonian Ĥ, which is expressed by Ĥ = Kn + Ĥe,
and also from the meaning of the following Hamiltonian Ĥn, which can be derived from Ĥ with
an replacement of Ĥe by its eigen value u(R).

Ĥn = Kn + u(R) (4.10)

Ĥn is the Hamiltonian for nuclear motion in the adiabatic approximation, Kn is the kinetic energy,
and u(R) represents the potential energy. In this sense, u(R) is called the adiabatic potential. As
discussed below, from u(R) we can obtain information on stable nuclear configurations (molec-
ular structures for molecules), heats of reactions (binding energies for diatomic molecules), and
strengths of chemical bonds.

Let us solve the eigen equation of Ĥ in eq.(4.1).

ĤΨ = EΨ (4.11)

The eigen value E is for the total energy including both nuclear and electronic motion. Noting
that the eigen function ψ(R, r) in eq.(4.9) for electronic motion describes electronic behavior with
nuclei almost resting, we assume the following form of the wave function Ψ.

Ψ(R, r) = φ(R)ψ(R, r) (4.12)

Insertion of eq.(4.12) into eq.(4.11) followed by use of eq.(4.9) as well as an approximation of
∆Aψ(R, r) = 0 based on consideration of slowly changing ψ(R, r) with respect to R leads to the
following equation.

Ĥnφ(R) = Eφ(R) (4.13)

By solving this equation, we obtain energy levels including both nuclear and electronic motion.
Namely, energies obtained from eq.(4.13) contain energies for translational, rotational, and vibra-
tional motion in addition to electronic motion. Methods for separating translational, rotational,
and vibrational motions have been studied in Section 1.12 for two-particle systems (diatomic
molecules).

4.1.3 The adiabatic potentials for diatomic molecules

When the adiabatic potential is given for a polyatomic system, various properties can be deter-
mined. Let us study these characteristics of diatomic systems as examples. u(R) for a diatomic
molecule is in general a curve as shown in Fig.4.2. R is the distance between the nuclei, and two
separated atoms correspond to the dissociation limit of R→∞. In the figure, u(R) decreases on
going from R = ∞ to the shorter distance between the two nuclei. The nuclei mutually undergo
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Figure 4.2: The potential energy curve for a diatomic molecule

attractive forces associated with the decrease of the energy. This means that binding forces exist.
The further decrease of R leads to the minimum of u(R) at a distance of Re, and for the shorter
distances u(R) increases rapidly. This indicates that for R < Re atoms strongly repel each other.
The force F may be defined as F = −du/dR, which formally represents a force expanding the
interatomic distance R. For R < Re F becomes positive, which leads to a repulsion between the
nuclei. For R > Re F becomes negative, which leads to an attraction between the nuclei. Re

is called the equilibrium internuclear distance, which means the bond-length or the interatomic
distance, one of the most important constant determining the molecular structure.

The magnitude of the stabilization energy associated with the formation of a molecule is called
the bond energy and is defined by the following quantity De.

De = u(∞)− u(Re) (4.14)

The bond energy is roughly equal to the dissociation energy, though some corrections for thermal
energies and zero-point energies need to be made for a rigorous comparison with the heat of
reaction actually measured. If the bond energy is small, corrections of thermal energies are
especially important. When temperature is so high that the thermal energy exeeds the bond
energy, molecules tend to dissociate and become unstable.

Around the equilibrium point of R = Re in the adiabatic potential curve u(R), a restoring force
arises with a magnitude proportional to ∆R = R−Re. According to Hooke’s law (F = −k∆R ),
stretched bonds tend to shrink, and conversely shrunk bonds tend to stretch. The force constant
indicating the magnitude of the spring can be obtained from the second derivative of u(R) as
follows.

k =
d2u

dR2
(differentiation should be made at R = Re ) (4.15)

This formula can be derived from a power series expansion of u(R) in terms of ∆R = R − Re

around R = Re. A differentiation yielding the force F followed by a comparison with Hooke’s
law, neglecting the higher order terms, leads to the expression for k.
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When the force constant k for the bond spring together with the reduced mass are given, the
vibrational frequency in the harmonic approximation is given by the following equation.

ν =
1

2π

√
k

µ
(4.16)

The zero-point energy Ev◦ of the harmonic oscillator is given by

Ev
◦ =

1
2
hν =

h

4π

√
k

µ
(4.17)

The ground-state energy of a diatomic molecule cannot become the minimum energy of the adi-
abatic potential. This is clearly related with the explanation of the zero-point energy in section
1.10. Therefore, the net energy required for dissociation (the dissociation energy) D0 is smaller
than the bond energy De by the zero-point vibration energy Ev◦ (see Fig.4.2).

D0 = De − Ev◦ (4.18)

As can be seen from the above, the adiabatic potential energy curve leads to the following very
important quantities.

(1) The bond length (The equilibrium internuclear distance) Re

(2) The bond energy De

(3) The spring constant of the bond (The force constant) k

(4) The vibrational frequency ν

(5) The zero-point vibration energy Ev◦

(6) The dissociation energy D0

Example 4.1 P. M. Morse proposed an experimental formula of the adiabatic potential curve
for diatomic molecules, which is given by

M(R) = D[e−2(R−R0)/a − 2e−(R−R0)/a]

This is called the Morse potential. Using this potential, obtain (1) The equilibrium internuclear
distance Re, (2) The bond energy De, (3) The force constant k, and (4) The vibrational frequency
ν. In the calculation of ν, assume a harmonic oscillator with a reduced mass of µ.

(Solution) In this problem we may write u(R) = M(R), and we obtain

du
dR

= D

[
−2
a

e−2(R−R0)/a − 2
(
−1
a

)
e−(R−R0)/a

]

= D

(
−2
a

)[
e−(R−R0)/a − 1

]
e−(R−R0)/a

In order to satisfy the equilibrium condition, the value of this equation should be vanishing. Thus
the parenthesis in the right side needs to be zero, and we obtain the condition to be R = R0.
Therefore,

Re = R0 (1)

Next, we calculate De = u(∞)− u(Re).

De = M(∞)−M(R0) = 0−D[1− 2] = D (2)

Then, we calculate k = d2u/dR2.

k =
d2M

dR2

= D

[(
−2
a

)2

e−2(R−R0)/a − 2
(
−1
a

)2

e−(R−R0)/a

]



CHAPTER 4. METHODS FOR MANY-ATOM SYSTEMS AND THEIR APPLICATIONS 87

Inserting the equilibrium condition R = Re = R0, we obtain

k = D

[(
2
a

)2

− 2
(

1
a

)2
]

=
2D
a2

(3)

Assuming a harmonic oscillator,

ν =
1

2π

√
k

µ

Inserting the above equation (3) for k into this expression, we obtain

ν =
1

2πa

√
2D
µ

(4)

4.2 The binding force and the electron density

In the previous section we studied the relationship between the slope of the adiabatic potential
and the binding force. In this section we will study how the binding forces connecting nuclei are
related with the quantum mechanical behavior of electrons and elucidate the causes of chemical
bonds.

4.2.1 Forces acting on nuclei and Feynman’s electrostatic theorem

Forces acting on individual atoms can be calculated by differentiation of the adiabatic potential
u with respect to the respective nuclear coordinates. For example, the force acting on the nucleus
A (FA)x along the x-coordinate (xA) is given by the following equation.

(FA)x = − du
dxA

(4.19)

R. P. Feynman presented a theory in 1939 that the right side of eq.(4.19) is related to the spatial
distribution of electrons based on the adiabatic approximation. ρ(x, y, z)dxdydz is introduced as
a quantity indicating how many electrons are contained in the volume element of dxdydz. ρ is a
quantity depending on the spatial coordinates and is called the electron density. This density is
related with all electrons involved in the system, and thus it is sometimes called the total electron
density. It should be noted that ρ is the number density rather than the probability density. It
follows that the integration of ρ over the whole space gives the total number of electrons N .

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)dxdydz = N (4.20)

The electron density ρ can be calculated from the following equation, provided that functions
of occupied orbitals φi as well as their occupation numbers ni are known.

ρ =
∑

i

ni|φi|2 (4.21)

From the Pauli principle occupation numbers ni are either 0, 1, or 2, depending on the electron
configuration. When ρ is obtained by quantum mechanics, the spatial distribution of negative
charges due to electrons is given by −eρ(x, y, z)dxdydz.

Forces acting on nuclei are expressed with the electron density as follows.

[Feynman’s electrostatic theorem]
The force acting on a nucleus is a resultant force of all sums of the electrostatic

repulsion due to all other nuclei and the electrostatic attraction due to the whole
electron densities.
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This is called Feynman’s electrostatic theorem. Since the resultant force is a vector quantity, the
summation should be made, considering the directions. As studied in chapter 1, the electrostatic
force on atom A at a position vector RA with an atomic number ZA and an electric charge
QA = ZAe caused by an electric charge Q placed at a position vector r is given by

F =
QQA

4πε0|r −RA|2 ( F < 0 for attraction, F > 0 for repulsion )

In this expression, the direction of the vector is not specified. The force vector is in the opposite
direction against the position of the other charge, when the force is repulsive between charges
with the same sign. The unit vector of this direction is expressed as −(r −RA)/|r −RA|. Using
this relation, the force vector F on the atom A caused by an electric charge Q placed at r is given
by

F = −QQA(r −RA)
4πε0|r −RA|3 = −QEA(r) (4.22)

Here,

EA(r) =
QA(r −RA)

4πε0|r −RA|3 (4.23)

EA represents the force on a unit charge at r caused by the charge of the nucleus A, and this is
called the electric field. It follows that eq.(4.22) stands for the reaction, that is the same magnitude
force to the opposite direction with respect to the force on an electric charge Q at r under the
electric field caused by the nucleus A.

The above arguments lead to the following theorem.
[Theorem] The electrostatic force acting on a charged particle is equal to the resultant force

of all reactions against the forces to other charged particles caused by the particle itself.
Using this theorem together with the formula for the electric field, a mathematical expression

for the force vector FA acting on the nucleus A is given as Feynman’s electrostatic theorem as
follows.

FA =
∫
eρ(r)EA(r)dr −

∑

B (B 6=A)

eZBEA(RB) (4.24)

In this formula, the three dimensional volume element dxdydz is written as dr. The integral
of the first term in the right side of eq.(4.24) is the resultant force of attraction due to electron
densities distributed spatially, and the second terms are the resultant force of repulsion due to
other nuclei of the atomic number ZB. Since the direction of EA is defined toward the other
charge, the attraction is positive and the repulsion is negative in eq.(2.24).

4.2.2 The binding region and the antibinding region

Whether electron densities give attraction or repulsion between nuclei depends simply on where
electron densities are placed spatially. In order to understand this, let us study two cases shown
in Fig.4.3, (a) an electron inserted in the midpoint of two protons, and (b) an electron is placed
outside at a half of the distance between the protons.

In the case of (a), the distance between the electron in the midpoint and a proton is a half of the
distance between the protons, and thus attractive forces on the protons caused by the electron is
four times larger than the repulsion between the protons (cf. Example 1.2). In the situation of (a),
the two protons approach each other, since the attractive forces due to the electron exceeds the
repulsion between the protons. In the case of (b), the proton near the electron attracted outward
by the electron with the same magnitude of a force of the case (a), whereas another proton in the
long distance is pulled to the same direction but very weakly with a magnitude of (1/3)2 times of
the force acting on the proton in the short distance. Although in this case the electron attracts
both of the protons to the right side, the nearer proton is attracted much more strongly to cause a
relative separation of the protons. This effect in (b) accelerate the repulsion between the protons.
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Figure 4.3: The binding region and the antibinding region

Based on the features in Fig.4.3, forces on a pair of unit positive charges by a unit negative
charge can be classified into the following cases.

(1) The force due to the unit negative charge binds two nuclei relatively.

(2) The force due to the unit negative charge repels two nuclei relatively.

This classification divides each spatial point into either the binding region (the bonding region)
, the antibinding region (the antibonding region), or the boundary between the binding and
antibinding regions.

When a pair of nuclei are attracted by forces due to electron densities in the binding region
which cancels out the repulsion between them, the nuclei are mutually bound to make a bond.
This is the mechanism of producing a chemical bond by the action of electron densities. When a
chemical bond is already produced, donation-reception by oxidation-reduction, light absorption, or
variation of electron distributions on the access of other atoms or molecules may cause a change of
the balance between the binding force and the antibinding force. Depending on the situations, the
bond may be strengthened to become short, and conversely the bond may be weakened to become
lengthened or even to dissociate. In this way, depending on how electron densities distribute over
the bonding and antibonding regions, chemical bonds are produced or broken.

4.2.3 The virial theorem

We have studied that binding forces originate from the action due to electron densities. The
Feynman’s electrostatic theorem, however, lose its significance if the electron densities are not
accurately obtained. Accurate electron densities need accurate wave functions. In order to test
the accuracy of wave functions, the following virial theorem is often used.

The virial theorem is expressed with using the internuclear distance R as follows.

2〈K〉+ 〈U〉+R
du(R)

dR
= 0 (4.25)

u(R) is the adiabatic potential in the Born-Oppenheimer approximation, and 〈K〉 and 〈U〉 are the
expectation values for the kinetic energy and the potential energy, respectively. At the equilibrium
internuclear distance, the last term in eq.(4.25) is vanishing, and thus the following quantity
becomes equal to 2.

− 〈U〉〈K〉 = 2 (4.26)

A calculated value of the left side becomes different from 2, if the wave function is not accurate,
and this ratio called the virial ratio in eq.(4.26) has a significance to test the quality of wave
functions. The eq.(4.26) can also be applied to an atom. The relation in eq.(4.26) generally holds
for a system of a potential energy with an inverse power of the distance as the Coulombic force.
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4.3 The molecular orbital method

An orbital function representing the electronic motion is called an atomic orbital (AO) for an
atom and a molecular orbital (MO) for a molecule. An approch using molcular orbitals for various
problems in chemistry is called the molecular orbital method. A fundamental technique to obtain
molecular orbitals is the SCF method based on the Hartree-Fock equation studied in Section
3.3. In this section, we will study an SCF method using linear combinations as a most powerful
technique in quantum chemistry as well as its application to the molecular orbital metohd.

Until ca. 1980 this field has been a holy ground limited to specialists of quantum chemistry.
However, recent developments of both hardwares and softwares for computers made it possible
for many people even with no special trainings in chemistry to use the molecular orbital method
easily. After 1990, this tendency has been accelerated. Thus we will study some basic ideas and
techniques for actual calculations in quantum chemistry.

4.3.1 The SCF method using linear combinations

Although the Hartree-Fock method studied in Section 3.3 is a general method determining
orbital functions based on the variation principle, its direct application is almost impossible except
for atoms or simple diatomic molecules. If we use linear combinations of some known functions
called basis functions or the basis set, problems to determine orbital functions reduce to feasible
numerical calculations, as studied for Ritz’s variation method in Section 3.2(b). It follows that
we can obtain the best orbital functions that can be expressed in terms of linear combinations of
the basis set.

Orbital functions {φi} to be determined are expanded in terms of linear combinations of basis
functions χ1, χ2, · · · , χN .

φi =
N∑
p=1

Cpiχp (4.27)

C. C. Roothaan derived a set of simultaneous equations to determine the best orbital functions
within the limitation of the basis set by adjusting the coefficients {Cpi} in 1951. We will not
describe details of the equations. The important features are as follows. For a basis set composed
of N linearly independent functions, the problem reduces to solving the secular equations with
the order N , as in the case of Ritz’s variation method. The SCF technique is used for solving the
secular equation in an iterative way until a set of SCF solutions are obtained, as in the Hartree-
Fock method. Consequently, we can obtain coefficients {Cpi} determining shapes of orbitals as
well as their orbital energies {εi}. In addition, the total energy of the system, which may be called
as the SCF energy, can be obtained as an approximation of the ground-state energy. For molecules,
some special structures with fixed nuclear positions are assumed in the adiabatic approximation.
Consecutive SCF procedures changing the molecular structures will yield approximate adiabatic
potentials. The SCF method using linear combinations proposed by Roothaan crucially depends
on the choice of basis functions {χp}.

The following inequalities hold among the Hartree-Fock SCF energy EHF, the SCF energy in
the linear combination approximation ELC, and the true ground-state energy EG.

EG ≤ EHF ≤ ELC (4.28)

The equality is only possible for one electron system. For many electron systems, the equality
does not hold, and the electron correlation energy, EHF − EG = ECORR, is always positive. In
addition, ELC−EHF is also positive for many electron systems, which is due to the incompleteness
of the basis set, since finite numbers of basis functions do not constitute a complete system.

4.3.2 The basis functions

In order to obtain molecular orbitals in the linear combination approximation, atomic orbital
functions such as 1s, 2s, 2px, 2py, 2pz for atoms composing a molecule are used as basis functions.
This idea comes from the traditional chemical concept that a molecule is composed of atoms.
From a physical point of view, molecular orbitals are considered as a superposition of electron
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waves of atomic orbitals, since an electron in the proximity of a particular atom is expected to
behave very similarly with the respective atomic orbitals.

Although various ways of constructing a basis set are proposed, one of the standard choice
for an individual atom is to use all atomic orbitals from the inner shell to the valence electrons,
which are concerned with the atomic ground-state. For example for a nitrogen atom, five types
of orbitals, 1s, 2s, 2px, 2py, 2pz, are used for atomic orbital functions. For an alkali atom or an
alkaline earth atom, np orbitals are included in addition to the ns orbitals. Such a basis set is
called the minimal basis. The minimal basis is the standard basis for obtaining molecular orbitals,
and we may assume this basis set if no special explanation is made.

For detailed quantum chemical calculations, we need to care for the choice of basis functions.
If we use a number of basis functions to improve accuracies of calculations, the size of the com-
putation (the computation time and the memory size) inevitably increases. In order to avoid
unnecessary expansion of the computation size, carefully selected basis functions should be sup-
plemented depending on the required accuracy of the calculations. For the better description
of valence electrons, valence atomic orbital functions with different spatial expansion are used
doubly or triply in addition to the standard functions. This kind of basis set is called the split
valence basis. Atomic orbital functions with the higher azimuthal quantum number are often
augmented for adjusting the shape of electron waves of individual atoms under the circumstance
in the molecule. This type of augmented functions are called the polarization functions. For
example, a basis set including only s and p type functions is augmented by d type functions as
polarization functions. Furthermore, loosely bound electrons such as the additional electron in a
negative ion require diffuse functions which supplement the remote area to which the additional
electron may be distributed.

Atomic orbital functions for basis functions need not necessarily to be exact atomic orbital
functions. In actual computations, approximate forms of atomic orbital functions have been used
in general owing to the convenience dealing with various types of integrals. For such approximate
functions, orbital functions proportional to e−ζr, which are proposed by Slater and are called the
Slater type orbitals (STO), have been used, and in recent years their analogues expanded in terms
of several numbers of Gaussian functions (Gaussian) with a factor of e−αr

2
, called STO-nG if

the number of Gaussians is n, are widely employed. Some other basis sets composed of several
Gaussians such as 4-31G and 6-31G developed by J. A. Pople and his colleagues are extensively
used. The detailed descriptions of basis functions should be referred to books for the molecular
orbital method and quantum chemical calculations. The SCF method with the linear combination
approximation is used not only for molecular orbital calculations but also for obtaining precise
atomic orbitals.

Conventions for signs and directions of atomic orbitals should be noted for practical use. In
principle, any atomic orbital function can be multiplied by -1 or varied its sign, and the sign
may be chosen arbitrarily for each atom within the mathematical freedom. However, in order to
understand calculated results the arbitrariness of the choice of signs for employed atomic orbitals
would result in confusion. For orbitals with directions such as p orbitals, coordinate axes may
be chosen arbitrarily for each atom, though analyses and interpretation would become difficult.
It follows that a systematic choice of signs and directions is recommended; usually, the same
coordinate axes are assumed for all atoms, and signs for the same types of orbitals such as 1s, 2p
are commonly chosen. For example, the sign for an 2px orbital is set positive at the outer
region along the commonly chosen x-axis. In many programs for quantum chemical calculations,
such a systematic choice has been utilized. However, usually no descriptions have been made in
computation programs or their manuals, and no explanations have been included in textbooks.
Thus, for students conventions for atomic orbitals are often the cause of confusion. We should also
be careful about the choice of the coordinate system and signs, since a different convention may
be used for a necessity such as symmetry. A different choice may be encountered when looking
up some references.

Example 4.2 Write down all members of the minimal basis for a water molecule, and answer
the total number of basis functions.

(Solution) Five basis functions 1s, 2s, 2px, 2py, 2pz are used for an oxygen atom. There are two
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hydrogen atoms, and each of them uses a 1s orbital. Thus, the total numbers of basis functions
are 5 + 1 + 1 = 7. It follows that molecular orbitals of a water molecule in the minimal basis are
obtained as linear combinations of these seven basis functions.

4.3.3 The non-empirical method and the semi-empirical method

A theoretical approach with no empirical information except for the atomic numbers, geomet-
rical coordinates of the nuclei, and numbers of electrons in the system to be studied is called
the ab initio (from the beginning) method or the nonempirical method. In the ab initio method,
orbital functions and their energies are determined by the SCF method in the linear combination
approximation, and then the total energy of the system, the wave function, electron densities, and
other properties are calculated. The nonempirical molecular orbital method in general requires
calculations of a huge numbers of integrals, which amount to the fourth power of the number of
basis functions. From this reason, nonempirical calculations of large molecules often encounter
considerable difficulties on account of the limited system of the computation facilities.

An approach considerably reducing the computation time and the amount of the data to be
disposed by estimating integral values with some equations involving empirical parameters is called
the semiempirical method. Empirical parameters in the semiempirical method are adjusted so as
to produce better results as far as possible. In the semiempirical molecular method, only valence
electrons are treated, and the nucleus charge are often combined with the inner shell electrons
to be handled as the effective core with a positive charge of (atomic number)-(the number of
the inner electrons). As for planar molecules with unsaturated bonds such as benzene, electrons
(π electrons) in p orbitals with a direction vertical to the molecular plane are often only dealt
with, and such an approach is called the π electron approximation. In a simple molecular orbital
method by E. Hückel, which will be introduced in the following Chapter, the eigen equation
to obtain molecular orbitals is simplified, and only one procedure solving the secular equation
gives molecular orbital functions and their orbital energies, provided that required integrals are
evaluated beforehand by a given procedure.

4.3.4 Electron configuration and HOMO/LUMO

After orbital functions {φi} and orbital energies {εi} are obtained by SCF methods or some
other methods, we can construct determinant wave functions Φ corresponding to various electron
configurations such as those shown in Fig.4.4 (cf. Ground-state and excited states of a helium
atom in Section2.7).

Figure 4.4: HOMO/LUMO and various electron configurations
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The occupation number of electrons ni for an orbital φi without spin is either 0, 1, or 2 owing
to Pauli principle. An orbital containing one or two electrons is called an occupied orbital. An
orbital of ni = 0 is called a vacant orbital. An occupied orbital of ni = 1 is called a singly occupied
molecular orbital (SOMO) or an unpaired electron. An occupied orbital of ni = 2 is called a fully
occupied orbital, a pair of electrons, or an electron-pair. Among occupied orbitals, the highest
occupied molecular orbital is called HOMO, and the lowest unoccupied molecular orbital is called
LUMO. HOMO, LUMO, and SOMO are called the frontier orbitals, because these orbitals are
especially related with the chemical reactivity as will be studied in Chapter 6.

An electron configuration with no unpaired electrons is called a closed shell, whereas an elec-
tron configuration with some unpaired electrons is called an open shell. Among all electron
configurations produced with the same number of orbital functions from {φ}, a special electron
configuration with the lowest expectation value by the determinant wave function Φ is called the
ground electronic configuration. The ground electronic configuration, which usually gives the min-
imum sum of the orbital energies,

∑
i niεi, may be considered to represent the ground state. In

the ground electronic configuration for an even-number electron system, orbitals from the lowest
to HOMO are occupied by a pair of electrons. Exceptionally, some systems with degenerate or
nearly degenerate HOMO and LUMO prefer to have a configuration of two unpaired electrons
with parallel spins, which can be deduced from Hund’s rule. Electron configurations produced
by electron excitation to unoccupied orbitals are called excited electronic configurations. Excited
electronic configurations are classified into one-electron excitation configurations, two-electron
excitation configurations and so forth depending on the number of excited electrons.

When addition or extraction of some electrons is made for an electrically neutral N -electron
system, we can construct a configuration of an N + z electron system. The system becomes a
negative ion if z > 0, and it becomes a positive ion if z < 0. Electron configurations for ions are
called ionic (or ionized) configurations.

4.3.5 Orbital energies and ionization energies

In connection with a mono positive ion, the difference between the energy Ei of an ionic con-
figuration Φi constructed with the SCF orbitals of the neutral system and the energy Eg of the
ground electronic configuration Φg, Ei−Eg, is simply equated with a −1 times value of the orbital
energy εi for the orbital φi from which an electron is removed.

Ei − Eg = −εi (4.29)

This equation presented in 1934 is called Koopmans’ theorem. If we assume that Ei−Eg equals to
the ionization energy, we may suppose that −1 times of SCF occupied orbital energies correspond
to ionization energies for removing an electron from the respective orbitals. Thus the following
equation holds.

Ii = −εi (4.30)

This is called Koopmans’ formula. Similar treatment for a mono negative ion leads to an analogous
equation including the orbital energy εk for the additional electron and the energy Ek for the
configuration of the negative ion.

Eg − Ek = −εk (4.31)

If we assume that the left side of this equation represents the electron affinity Ak, we obtain

Ak = −εk (4.32)

As clearly be seen from definitions of HOMO and LUMO, the electron affinity becomes the
maximum at LUMO, and the ionization energy becomes the minimum at HOMO, provided that
the electronic configuration represents to the ground state.

Ak ≤ ALUMO ≤ IHOMO ≤ Ii (4.33)

The middle equation is limited to a special system in which an orbital is HOMO as well as LUMO.
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4.3.6 Methods including the electron correlation

As mentioned in Section 3.3, the SCF method does not include the electron correlation. In
order to include electron correlation effects, the configuration interaction (CI) method based on
the variation approach and Mφller-Plesset’s (MP) method based on the perturbation approach
are extensively used.

In the CI method, linear combinations of various electron configurations {Φi} as many as
possible are used to solve ĤΨ = EΨ.

Ψ =
∑

j

CjΦj (4.34)

Mathematical treatments for this problem is the same as mentioned for Ritz’s variation method.
Inclusion of electron configurations as many as possible for obtaining the better accuracy and reli-
ability is incompatible with saving the computation time and the computer memory for reducing
the cost of calculations. A compromise between the conflicting demands needs to be made. The
CI method often requires special knowledge to choose reasonable selections of electron configura-
tions to be included. The CI method has an advantage to obtain excited-state energies and wave
functions in addition to the ground-state properties owing to the characteristics of Ritz’s variation
method.

In the MP method, an unperturbed Hamiltonian operator Ĥ0 is defined so that it may have
eigen functions constructed as determinant wave functions {Φj}using the SCF orbitals. Thus
the perturbation for the MP method Ĥ ′ is introduced as Ĥ ′ = Ĥ − Ĥ0, which is the difference
between the exact Hamiltonian Ĥ and Ĥ0. Treatments to the second order have already been
mentioned in Section 3.1. Energy corrections by the MP method starts from the second order,
which is denoted as MP2. In general the n-th order treatment in the MP method is denoted as
MPn. Although it is possible to include the higher order terms such as MP3 or MP4, the higher
terms need considerably long computation time. Since there is no difficulties except for the choice
of the order n, the MP method is conveniently used for the correction of the ground-state energy.

4.4 Quantum chemical calculations

In this section quantum chemical calculations by the nonempirical molecular orbital method
are compared with the experiments.

4.4.1 Molecular structures

By finding out the minimum point on the potential energy surface depending on the nuclear
coordinates (geometry optimization), we can determine the molecular structure. Table 4.1 lists
calculated molecular structures in comparison with the experiments. Molecular structures are
determined by experimental methods, such as electron diffraction and microwave spectroscopy.
Theoretically obtained molecular structures can be used to predict microwave spectra and other
experiments.

4.4.2 Molecular vibrations

Vibrational frequencies ν can be calculated with the curvatures (the second derivatives) around
the minimum of the potential energy surface. Table 4.2 lists calculated vibrational frequencies
in the harmonic approximation in comparison with experimental harmonic frequencies deduced
from the experiments assuming the Morse potential with unit of the wave number (cm−1). Al-
though we will not describe details to avoid stepping outside the range of this book, calculations
of molecular vibrations are useful for prediction of infrared (IR) absorption spectra as well as
Raman scattering spectra. Furthermore, knowledge of molecular vibrations can be used to obtain
important thermodynamic quantities such as heat capacities and entropies.
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Table 4.1: Molecular structure (Bond length R/Å and bond angle θ/◦)

Molecule Structure constant SCF method MP2 method CI method Experiment
H2 R(H−H) 0.730 0.738 0.746 0.742
CH4 R(C−H) 1.084 1.090 1.091 1.092

θ (HCH) 109.47 109.47 109.47 109.47
H2O R(O−H) 0.947 0.969 0.966 0.958

θ (HOH) 105.5 104.0 104.3 104.5
HCN R(C−N) 1.133 1.177 1.154 1.153

R(C−H) 1.509 1.070 1.067 1.065
HNC R(C−N) 1.154 1.187 1.171 1.169

R(N−H) 0.985 1.002 0.997 0.994
HCHO R(C−O) 1.184 1.221 1.205 1.208

R(C−H) 1.092 1.104 1.101 1.116
θ (HCH) 115.7 115.6 115.8 116.5

Table 4.2: Molecular vibration of diatomic molecules in harmonic approximation/cm−1. Experi-
mental harmonic frequencies are obtained from observed data assuming the Morse potential.

Molecule SCF method MP2 method Experiment
H2 4647 4528 4401
HF 4358 4038 4139
LiH 1415 1393 1406
LiF 1033 998 914
Li2 339 368 351
CO 2438 2113 2170
N2 2763 2173 2360

4.4.3 Heats of reaction

Quantum chemical calculations of reactants and products lead to the heat of reaction, which
can be obtained from the energy change on the reaction. For a reaction of A + B→ 2C, we need to
calculate the energies E(A), E(B), E(C) by a molecular orbital method, and the heat of reaction
can be obtained as ∆E = 2E(C) − E(A) − E(B). For endothermic reactions ∆E > 0, and for
exsothermic reactions ∆E < 0. Table 4.3 shows calculated results for heats of reaction in compar-
ison with the experiments. Although experimental values of heats of reaction are conventionally
shown for the standard state at a pressure of 1 atm and a temperature of 298 K, listed values
in Table 4.3 are those at 0 K corrected with zero-point energies so that they may correspond to
theoretically obtained values.

4.4.4 Electron distribution and the electric dipole moment

We can obtain the electron density distribution by molecular orbital calculations. Figure 4.5
demonstrates electron densities in some molecules. Contour lines in the figure are shown in a
geometric series with a ratio of 2. HC≡CH, HC≡N, and N≡N are called an isoelectronic series,
since they have the same number of electrons, similar electron configurations, and similar orbital
shapes. The third and the fourth orbitals from the bottom are inner shell orbitals, whose electron
densities are concentrated around the nuclei with extremely narrow spacings. The bottom maps
are contours of the total electron densities, and these maps represent the shapes of the molecules.

The electron distribution of a molecule is related to its electric polarization. The electric polar-
ization of a molecule is represented by the electric dipole moment. When an electric charge Qi is
located at Ri in a group of electric charges, the electric dipole moment µ of this system is given
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Table 4.3: Heats of reaction including zero-point energies at 0 K (the unit is kJ mol−1)

Reaction SCF method Experiment
Li2 + H2 −→ 2LiH 92 84
F2 + H2 −→ 2HF −561 −556
Cl2 + H2 −→ 2HCl −230 −192
O2 + 2H2 −→ 2H2O −439 −523
N2 + 3H2 −→ 2NH3 −138 −155
HC ≡ CH + H2 −→ CH2 = CH2 −226 −201
CH2 = CH2 + 2H2 −→ 2CH4 −268 −238
CO + 3H2 −→ CH4 + H2O −247 −264
HOOH + H2 −→ 2H2O −364 −360
HCN −→ HNC 52 61
CH3CN −→ CH3NC 87 87

Table 4.4: Molecular electric dipole moments (in the unit of 10−30 C m)

Molecule SCF method Experiment
H2 0.0 0.0
HF 6.6 6.1
HCl 5.0 3.6
LiH 19.3 19.4
LiF 20.2 21.0
LiCl 24.8 23.8
NaF 26.7 27.2
NaCl 31.3 30.0
HCN 10.8 10.0
C2H2 0.0 0.0
NH3 6.5 4.9
PH3 2.6 1.9
H2O 7.4 6.2
H2S 4.6 3.2
HCHO 9.2 7.8

by the following formula.
µ =

∑

i

QiRi (4.35)

Within the adiabatic approximation, we may treat electrons as electron densities and nuclei rest-
ing, and it follows that the electric dipole moment based on the quantum theory is given by the
following equation.

µ = −
∫
eρ(r)rdr +

∑

A

eZARA (4.36)

Table 4.4 lists some examples of theoretically calculated electric dipole moments in comparison
with the experiments. Experimental values of molecular electric dipole moments are obtained by
the following experiments.

(1) Measurements of dielectric constants or refractive indexes for gases and solutions.

(2) Measurements of changes of microwave spectra under the applied electric fields (the Stark
effect).

(3) Measurements of changes in directions under the action of the applied electric fields for
molecular beams ejected through a nozzle into vacuum.

As unit for dipole moments, 1 D(debye) = 3.3356× 10−30 Cm is sometimes used.
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Figure 4.5: Contour maps of electron densities

4.4.5 Ionization energy

Ionization energies can easily be obtained from molecular orbital energies via Koopmans’ for-
mula (4.30). Table 4.5 lists examples of calculated ionization energies via Koopmans’ formula in
comparison with experimental values. This table only shows the lowest ionization energies cor-
responding to the energy required to remove an electron from HOMO. Improved results by the
configuration interaction (CI) method are also listed for some molecules. Ionization energies can
be measured by the following experiments.

(1) Measurements of photoelectron spectra.

(2) Measurements of the minimum energies required to ionize the sample molecule by impact
of electron beams, which can be made by means of a mass spectrometer.

(3) Observation and analysis of spectral line series called Rydberg series which is similar to
spectral line series of the hydrogen atom.

Photoelectron spectroscopy gives not only the lowest ionization energy but also other ionization
energies, corresponding to removal of an electron from various molecular orbitals (cf. Section 5.8).
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Table 4.5: The lowest ionization energies for molecules (eV)

Molecule SCF method CI method Experiment
F2 18.20 15.48 15.83
N2 17.13 16.62 15.60
H2O 13.64 11.70 12.62
H2S 10.43 9.61 10.48
NH3 11.29 9.68 10.85
HF 17.09 15.14 16.05
HCN 13.56 13.28 13.60
HCHO 11.96 10.32 10.88
CO2 14.63 13.01 13.78
CS2 9.94 9.23 10.06
CH2 = CH2 12.12 10.22 10.51
CH≡CH 11.02 10.75 11.40
CH3CN 12.56 12.10 12.21
CH3Cl 11.68 10.70 11.29
CH3OCH3 11.38 9.62 10.04
CH3OH 12.16 10.37 10.94
C2H5OH 11.89 10.64
C2H5SH 9.58 9.36
C2H5NH2 10.19 9.50
C2H5Cl 11.54 11.06
C6H6 9.03 9.25
C6H5NH2 7.95 8.00
C6H5OH 8.55 8.70
B2H6 12.75 11.86 11.89

Exercises

4.1 J. E. Lennard-Jones proposed an experimental formula representing intermolecular potential
energy curves, which includes integers n and m (usually n = 12, m = 6) and constants D and σ.

U(R) = D

[
m

n−m
( σ
R

)n
− n

n−m
( σ
R

)m]

Using this equation, obtain the equilibrium internuclear distance Re and the bond energy De.
4.2 Calculate expectation values of the potential energy 〈U〉, the kinetic energy 〈K〉, and their

ratio (the virial ratio)= −〈U〉/〈K〉 for the 1s wave function of the hydrogen atom.
4.3 List up the minimal basis set for molecular orbital calculations of a formaldehyde molecule,

and answer the number of basis functions.



Chapter 5

Molecular orbital and molecular
structure

Various problems in chemistry can be investigated theoretically based on the molecular orbital
method. Theoretical approaches can be grouped into two types; one is the quantitative approach
yielding calculated values which can be compared with experimental values, and the other is the
qualitative approach giving explanation and expectation of experiments. Basic descriptions for the
quantitative approach have been given in the preceding chapter. In this chapter, basic methods
of qualitative treatments and applications to molecular structures and molecular electronic states
will be studied. In the last section of this chapter, relationships among energy levels of molecular
orbitals, ionization energies, and dissociation energies will also be studied in connection with
observed photoelectron spectra.

5.1 Hydrogen molecule ion and hydrogen molecule

5.1.1 Hydrogen molecule ion

A hydrogen molecule ion is composed of two protons and an electron. In Figure 5.1 RA,RB,
and r denote positions of two protons A, B, and the electron, respectively. Fixing the protons at
the distance R, we consider the motion of the electron using the following Hamiltonian operator
Ĥ.

Ĥ = − ~
2

2m
∆− e2

4πε0rA
− e2

4πε0rB
+

e2

4πε0R
(5.1)

rA and rB denote distances between the electron and the protons A and B, respectively. The wave
function ψ representing the motion of the electron is a function of the position of the electron r,
and ψ changes together with the change of the distance R between the protons.

Figure 5.1: The Hydrogen molecule ion H2
+

99
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Since ψ represents the behavior of the electron wave of a hydrogen molecule ion, it can be
expressed as a superposition of electron waves for isolated hydrogen atoms, which correspond to
electron waves moving around respective protons separately. Thus, ψ of the hydrogen molecule
ion can be expanded as a linear combination of atomic orbitals χA and χB for the hydrogen atoms.

ψ(r) = CAχA(r) + CBχB(r) (5.2)

CA, CB are coefficients representing the weights of the superposition of χA and χB. As χA, χB,
the valence 1s orbital function φ1s for the hydrogen atom is used.

φ1s(r) = π−1/2aB
−3/2e−r/aB (5.3)

For χA and χB, distances rA, rB between the electron and the respective proton A,B should be
used for the variables of φ1s.

χA = φ1s(rA)
χB = φ1s(rB) (5.4)

Now, let us consider the following expectation value u of Ĥ by ψ in eq.(5.2).

u =
∫
ψ∗Ĥψdr∫
ψ∗ψdr

(5.5)

Conditions minimizing this u based on Ritz’s variation method yield the following simultaneous
equations (cf. Section 3.2).

(α− u)CA + (β − uS)CB = 0
(β − uS)CA + (α− u)CB = 0 (5.6)

In place of the following integrals including atomic orbital functions χA and χB, symbols α, β and
S are used in the above equations.

∫
χi
∗Ĥχjdr =

{
α (i = j)
β (i 6= j)

(5.7)

∫
χi
∗χjdr =

{
1 (i = j)
S (i 6= j)

(5.8)

In the above equations, i and j refer to protons A and B, but no specification of A and B need to
be made for α, since two protons are the same particle.

Among the integrals in eqs. (5.7) and (5.8), integrated values depend on the distance R between
the protons, except for the integral of the normalization condition of the 1s function. α, β and
S are integrals including exponential functions, which can be calculated based on mathematical
knowledge in the college level. Although the details will not be mentioned, qualitative features of
these integrals are summarized as follows.

The overlap integral S satisfies the following inequalities.

0 < S < 1 (5.9)

As shown in Fig.5.2, S → 1 in the limit of R → 0, and S → 0 in the limit of R → ∞. α
and β approach +∞ in the limit of R → 0. Although the potential energy due to attractive
forces between the electron and the protons becomes just twice of the case of a hydrogen atom
in the limit of R → 0, the potential energy for the repulsion between the protons corresponding
to the last term of eq.(5.1) diverges to +∞ for R → 0. The value of α for R → ∞ agrees with
the 1s orbital energy E1s of a hydrogen atom, since the interaction with the other proton may
be neglected. The value of β for R → ∞ results in β → 0, because at least one of the orbital
functions becomes to vanish irrespective of the location of the electron. Figure 5.2 also shows the
R-dependence of ua, ub.

In order to obtain nontrivial solutions for the simultaneous equations (5.6) other than CA =
CB = 0, the following secular equation should be satisfied.

∣∣∣∣
α− u β − uS
β − uS α− u

∣∣∣∣ = 0 (5.10)
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Figure 5.2: The R -dependence of α, β and S

We expand this equation to obtain

(α− u)2 − (β − uS)2 = 0

This is a quadratic equation of u, and two solutions ua, ub (let ua > ub for convenience) are given
as follows.

ua = α−β
1−S

ub = α+β
1+S

(5.11)

These two solutions are approximate energy levels of H2
+. ua and ub correspond to the excited

state and the ground-state, respectively. Figure 5.3 shows variations of ua, ub as functions of the
internuclear distance R.

The curve for ub has a minimum giving an internuclear distance Re = 1.32 Å and a binding
energy De = 1.77 eV, which means a production of a stable bond. Corresponding observed values
are Re = 1.06 Å and De = 2.78 eV. These results are not disappointing, since the restriction of
the wave function ψ in the form of eq.(5.2) is a very crude approximation. It is significant that a
brief description of the chemical bonding with Re of 1 Å and De of a few eV is given. The curve for
ua decreases with the increase of R, which gives repulsion between nuclei to lead to dissociation.

Wave functions ψa, ψb corresponding to the respective states are obtained by using relations for
CA and CB, which are derived from insertion of ua, ub into eq.(5.6). The following normalization
condition should also be used.∫

|ψ|2dr = CA
2 + CB

2 + 2CACBS = 1 (5.12)

Insertion of ua into eq.(5.6) gives

(CA + CB)
β − αS
1− S = 0
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Figure 5.3: Potential energies for H2
+

This equation leads to CA = −CB, and by using the normalization condition we obtain for ψa

ψa =
χA − χB√
2(1− S)

(5.13)

Next, using ub similarly we obtain

ψb =
χA + χB√
2(1 + S)

(5.14)

Now, let us consider physical significance of these wave functions ψa and ψb. As can be seen from
eq.(5.2), ψ is a new electron wave produced by interference of electron waves of atomic orbitals
χA and χB with weighting factors of coefficients CA and CB. In ψa signs of two components
CAχA and CBχB are opposite to cancel out each other (Fig.5.4). Such an orbital is called an
antibonding orbital. Interference of electron waves of atomic orbitals effectively occurs at spatial
regions between two nuclei where the orbitals overlap each other. For ψa, electron densities in the
binding region decrease by interference in comparison with the case of no interference, and electron
densities in the antibinding region increase to result in strong repulsion between the nuclei. On
the other hand for ψb, two components are constructive with the same sign. Such an orbital is
called a bonding orbital. In the case of ψb, electron densities in the binding region increase to
produce binding forces between the nuclei (Fig. 5.4). The bonding in the hydrogen molecule
ion is due to an electron shared in the binding region between two nuclei, and thus this kind of
bond is called the one-electron bond. Although treatments here are approximate, the following
two findings are important; (1) electron distribution determined by interference between electron
waves lead to binding or anti binding forces, and (2) only one electron can produce a bond.
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Figure 5.4: Interference of electron wave of atomic orbitals

5.1.2 The hydrogen molecule

The first explanation based on quantum mechanics was made for the mechanism of the chemical
bond in a hydrogen molecule by W. Heitler and F. London in 1927. According to their valence
bond method, a bond is formed by interactions between atoms approaching each other. This
method is thereafter a standard version of the theory of the chemical bond in many textbooks.
Long after in 1962 J. R. Reudenberg made a careful analysis of the binding energy in the valence
bond method, and he disclosed that the balance of potential and kinetic energies, which is related
with the virial ratio studied in Section 4.2, is incorrect in the method by Heitler and London.
Recent developments of computers have considerably increased the advantage of the molecular
orbital method, and thus we do not deal with the valence bond method.

The molecular orbital method mentioned in Section 4.3 gives potential energy curves for a
hydrogen molecule as shown in Fig.5.5. E(H2) and E(H) denote energies of a hydrogen molecule
and a hydrogen atom, respectively. R and aB are the internuclear distance and the Bohr radius,
and both of the ordinate and the abscissa are normalized to the atomic unit. Even in the SCF level
a stable chemical bond is formed, and the configuration interaction method (CI) considering the
electron correlation effects gives a much better result in comparison with the experiments. The
molecular orbital method and its application to many molecules including the hydrogen molecule
will be described in detail in the following Sections.
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Figure 5.5: The potential energy of the hydrogen molecule H2. The ordinate shows E(H2)−2E(H)
2|E(H)|

5.2 The Hückel molecular orbital method

Precise calculations by the ab initio molecular orbital method produce considerable amounts of
computed results due to the huge size of the calculations, which often leads to confusions in the
interpretation. In general, the larger basis set in the linear combination method yields the better
accuracy at the expense of the simplicity. Many basis functions inevitably make it difficult to
understand obtained wave functions in terms of interference of electron waves. These difficulties
in interpretation and understanding also lead to difficulties in scientific analyses and prediction
without calculations.

In order to avoid such difficulties in interpretation and understanding, even specialists of molec-
ular orbital calculations dare to perform simple calculations with the minimal basis (cf. Section
4.3) for the basis functions and carefully investigate constructions of molecular orbitals. With-
out numerical calculations, shape of orbitals as well as energy levels can be briefly anticipated
on the basis of drastically simplified molecular orbital methods. In this section, we study the
Hückel molecular orbital method, since it has been used as the most suitable method to discuss
the qualitative nature of molecular orbitals.

5.2.1 Fundamental treatments in the Hückel method

In the Hückel molecular orbital method, which is sometimes called the Hückel method or the
HMO method, shape and energies of orbitals are obtained without numerical integrations as far
as possible. Although there are many integrals in the basic equations, various quantities included
in the secular equation are replaced by parameters with characteristic values depending on the
elements or bonding types.

Molecular orbitals {φi} in the Hückel method are expressed as linear combinations of atomic
orbitals {χq}.

φi =
∑
q

Cqiχq (5.15)

Here, {χq} are assumed to be normalized atomic orbital functions. Unless necessary, real functions
are used for {χq}, and coefficients of the linear combinations are also treated as real numbers. In
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some special cases such as ring molecules with periodicity, complex numbers should be used for
{Cqi} exceptionally. Molecular orbitals {φi} should be normalized by the following condition.

∫
φi

2dr =
∑
p

∑
q

CpiCqiSpq = 1 (5.16)

Spq is the overlap integral between χp and χq given by the following equation.

Spq =
∫
χpχqdr (5.17)

Since {χq} are assumed to be normalized, {Spp} are all equal to the unity. The absolute value
of {Spq} for p 6= q, which is in general smaller than 1, becomes very small to be neglected, if the
distance between p and q is very large. {Spq} represent how much extent electron waves of the
atomic orbitals are overlapping, and thus they are called overlap integrals.

Molecular orbitals {φi} are determined from the following one electron eigen equation.

ĥφi = εiφi (5.18)

Here, ĥ is the one-electron Hamiltonian operator determining the electron motion. This ĥ in-
cludes an operator corresponding to the kinetic energy of an electron and average potentials of
interactions between electrons as well as attractive potentials from nuclei. The problem to obtain
{φi} and {εi} begins with the condition minimizing the expectation value εi of ĥ with {φi} by
changing {Cqi}. This is a variational problem in terms of linear combinations, which leads to the
following simultaneous equations.

∑
q

(Hpq − εiSpq)Cqi = 0 (5.19)

Here, Hpq is given by the following equation.

Hpq =
∫
χpĥχqdr (5.20)

Hpq is called the Coulomb integral for p = q with writing Hpp = αp and called the resonance
integral for p 6= q with writing Hpq = βpq. Resonance integrals as well as overlap integrals can be
neglected, since they become very small when p and q are in a long distance.

Orbital energies εi are obtained from the following secular equations (cf. Section 3.2).

|Hpq − εiSpq| = 0 (5.21)

Inserting orbital energies εi from the solutions of eq.(5.21) into eq.(5.19) and using normalization
conditions of eq.(5.16), {Cqi} are obtained.

5.2.2 The simple Hückel method

According to the policy of the Hückel method that numerical calculations of integrals should
be avoided as long as possible, the simple Hückel method adopts further simplifications with the
following approximations. The traditional Hückel method is this method, which can be compared
with the extended Hückel method mentioned in the next subsection and is called as the simple
Hückel method. In the conventional Hückel method, the π electron approximation is usually
adopted. If α and β are carefully estimated, the Hückel method can be applied to the more
general cases.

(1) Neglect of overlap integrals Spq (p 6= q)
Overlap integrals Spq for p 6= q are much smaller than the case of Spp = 1, and thus they can

be neglected.

Spq = δpq =

{
1 for p = q

0 for p 6= q
(5.22)
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This approximation leads to the following equations much more simplified than eqs. (5.19) and
(5.21).

∑
q

(Hpq − εiδpq)Cqi = 0 (5.23)

|Hpq − εiδpq| = 0 (5.24)

In addition, the normalization condition for molecular orbitals is also simplified as follows.
∑
q

Cqi
2 = 1 (the summation should be taken for all atomic orbitalsχq) (5.25)

Since the assumption of eq.(5.22) corresponds to the expansion in terms of the orthonormal set
{χq} by eq.(5.15), the summation of coefficients of all molecular orbitals {φi} satisfys the following
formula.

∑

i

Cqi
2 = 1 (the summation should be taken for all molecular orbitalsφi) (5.26)

(2) Neglect of resonance integrals β for non-bonded atomic pairs
βpq as well as Spq become very small when χp and χq become spatially far apart. However,

for bonded atomic pairs βpq are considered, since they are very important. βpq for non-bonded
atomic pairs are disregarded.

(3) Parameterization of resonance integrals β for bonded atomic pairs
Depending on combinations of atomic orbitals, βpq is treated as a parameter. In many cases,

numerical values for β are not necessarily given. Sometimes β is determined by experiments.
Although the sign of β is important, it depends on the type of bonds (cf. Section 5.3).

(4) Parameterization of Coulomb integrals α
Depending on the type of atomic orbitals, Coulomb integrals are treated as parameters. α

equals approximately to the atomic orbital energy, and its sign is always negative. |α| is equal
to the energy required to remove an electron from the atomic orbital, which is approximately the
ionization energy. Although α can often be used with no value, the relative magnitude as well as
its sign are very important.

5.2.3 The Extended Hückel method

Although the simple Hückel method is a convenient method, it cannot be applied to a system in
which positions of chemical bonds are not clear. For example, metal complexes as well as organic
compounds having complex structures are not suitable for the simple Hückel method method.
Thus, the extended Hückel method exceptionally evaluating overlap integrals was proposed, and
it has been extensively used as an improved approach, though such a treatment is clearly against
the policy avoiding numerical integrations as far as possible. The extended Hückel method is
based on the fundamental formula of eqs. (5.15)∼(5.21) as well, and some further approximations
used are summarized as follows.

(1) Overlap integrals Spq are evaluated by direct integration using atomic orbitals functions
{χq}. In many cases, STOs mentioned in Section 4.3 are used.

(2) Resonance integrals Hpq = βpq (p 6= q) are estimated by the following approximate formula.

βpq = KSpq
αp + αq

2
(5.27)

Here, αq is a Coulomb integral involving an atomic orbital χq, and the constant K is set as
K = 1.75. This formula can be deduced as follows. In the eq.(5.20) defining the resonance
integral, replacement of the operator ĥ by an assumed constant value of a leads to βpq = aSpq,
and also in eq.(5.20) assumption of a simple average of the integrals for p = q in place of the
integral for p 6= q yields βpq = (αp + αq)/2. These characteristics are combined into the formula
(5.27). This formula (5.27) leads to an important relationship that the resonance integral βpq
and the overlap integral Spq have opposite signs, because K > 0 and αp < 0, αq < 0 based on
the reasons given below. Also in the simple Hückel method, the resonance integral βpq and the
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overlap integral Spq have opposite signs.
(3) Coulomb integral Hqq = αq is nearly equal to the energy of the atomic orbital χq, and thus

αq is estimated by the following formula using the ionization energy Iq of the electron in χq.

αq = −Iq (5.28)

Here, Iq is positive, and αq is negative. An atom with strong negativity has a large ionization
energy Iq, which leads to a large value of |αq|. Oppositely, |αq| for an atom with weak negativity
becomes small. Magnitudes of |αq| for orbitals of valence electrons are usually in the range of 5
eV - 30 eV. On the other hand, magnitudes of |αq| for atomic orbitals of inner shell electrons have
much larger values in the range of several hundreds or thousands eV.

5.3 Overlap between orbitals and orbital interactions

Molecular orbitals (MO) are composed of atomic orbitals (AO), (1) mathematically linear com-
binations of functions, and (2) physically superposition of electron waves, and (3) chemically
mixture of ingredients. Composition of molecular orbitals made of some atomic orbitals is in
general governed by interactions between orbitals. Overlap of orbitals leads to interactions and
mixing of orbitals, which results in formation of new orbitals. In this section, the mechanisms
involved in the formation of new orbitals associated with overlap between orbitals are studied on
the basis of Hückel molecular orbital method.

5.3.1 Overlap between orbitals

In the Hückel method, the magnitude of the resonance integral |β| is most important for the
formation mechanisms of molecular orbitals from atomic orbitals via interference of electron waves.
The detail of the reason will be discussed below. Here, we will study characteristics of overlap
integrals, since there is a relationship of eq.(5.27) that β is proportional to the overlap integral S.

Overlap integrals depend on types and combinations of atomic orbitals as well as on the distance
between the nuclei at which the atomic orbitals are placed. Typical cases are illustrated in Fig.5.6.

In this figure, as an s orbital and a p orbital, 1s and 2p orbital functions are used, respectively.
In order to represent the spatial distribution of each orbital, a circle is used for an s orbital, and
a pair of ellipses are used for a p orbital. Signs of the functions are specified by + and − in
the figures. Absolute values of atomic orbital functions are generally decreasing to vanish with
the distance becoming very large. It should be noted that the same sign of electron distributions
extending outside of the circles and the ellipses.

Fig.5.6(a) shows the R dependence of an overlap integral between two p orbitals having parallel
directions, which decreases monotonically. Such an overlap between parallel p orbitals is called the
π type orbital, and chemical bonds originating from this type of overlaps are called the π bonds. In
π type overlaps, the axis connecting the atoms is included in a common nodal plane of the atomic
orbitals. In a π orbital produced by the π type overlap, probabilities of finding an electron on the
nodal plane containing the bond axis are vanishing. Fig.5.6(b),(c),(d) show the R dependence of
overlap integrals between orbitals with no common nodal plane including the bond axis. These
types of overlaps are called the σ type overlap, and chemical bonds originating from this type of
overlaps are called the σ bonds. Although the overlap integral is not necessarily monotonous in
the σ type, the overlaps become decreasing until vanishing on going to a large distance in R as in
the case of the π type overlap. This is related to the general tendency that, associated with the
increase of the overlap between orbitals approaching each other, the interference between electron
waves becomes to be more significant.

In Fig.5.6(e)(f), overlap integrals are shown for combination of orbitals with and without a
nodal plane including the bond axis, contrary to other cases. Although the absolute values of the
orbital functions are the same at a pair of symmetrical points with respect to the plane including
the bond axis, their signs are opposite for one orbital and the same for the other orbital. It follows
that overlap integrals of these orbital functions are always vanishing irrespective of the distance
R, because the lower and the upper contributions cancel out mutually. This type of overlaps
is called the overlap without symmetry matching. When overlaps are vanishing, necessarily no
interference occurs, and hence no bonds are formed.
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As will be studied in detail below, the formation of a chemical bond is governed by the overlap
between orbitals. This is called the principle of overlap, and interactions between orbitals are called
orbital interactions. The magnitude of interorbital interactions depend on the magnitude of |β|
or |S|. According to the principle of overlap, the orbital interaction is forbidden for β = 0(S = 0)
and allowed for β 6= 0(S 6= 0). The relationship of orbital interactions with overlaps between
orbitals can be summarized as follows. [Orbital interactions and overlap between orbitals]

(1) Orbitals without symmetry matching (S = 0) do not interact with each other.

(2) Orbitals with overlaps (S 6=) interact with each other.

(3) The magnitude of an orbital interaction increases with the increase of the overlap (|S|).
(4) Orbital interactions become negligibly small for long distances (large R) and become large

when the overlap increases for short distances.

Figure 5.6: Overlap (overlap integrals S) between various atomic orbitals
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5.3.2 The principles of orbital interactions

Let us study by the simple Hückel method the mechanism of orbital interactions between a
pair of atomic orbitals χA and χB with orbital energies of αA and αB and their mutual resonance
integral of β, yielding a molecular orbital of φ = CAχA +CBχB with an orbital energy of ε. First,
we obtain ε by solving the secular equation (5.24). In this case, HAA = αA, HBB = αB, HAB =
HBA = β, and thus the secular equation becomes

∣∣∣∣
αA − ε β
β αB − ε

∣∣∣∣ = 0 (5.29)

Denoting the left-hand side as f(ε) and expanding the determinant, we obtain a quadratic equation
of ε.

f(ε) = ε2 − (αA + αB)ε+ αAαB − β2 = 0 (5.30)

Let us consider the following two cases depending on whether β is equal to zero or not.
For β = 0, factorization can easily be made to give f(ε) = (ε − αA)(ε − αB) = 0, and two

solutions become αA and αB, which results in no changes from the original orbital energies and
orbital functions. Such simple solutions of (εA = αA, φA = χA) and (εB = αB, φB = χB) satisfy
the eq.(5.18), ĥφA = εAφA and ĥφB = εBφB, to give no orbital mixing. It follows that for β = 0
there are no interactions between the orbitals to keep the orbital functions unchanged in their
original forms.

Next, let us consider variations of orbital energies for β 6= 0. We may use a convenience to set
αA ≥ αB without losing the generality. Calculations of f(αA) and f(αB) lead to the following
equation.

f(αA) = f(αB) = −β2 < 0 (5.31)

Since f(ε) is a quadratic function with a concave in a parabolic form, there exist two solutions of
εa, εb(εa ≥ εb), and we obtain the following inequality.

εa > αA ≥ αB > εb (5.32)

As verified later, the higher orbital energy εa corresponds to the energy level of the antibonding
orbital, and the lower one εb corresponds to that of the bonding orbital.

These results can be summarized as the rules for orbital-energy changes.

Rules for orbital-energy changes
For a non-vanishing resonance integral (β 6= 0) orbital interactions give new orbital

energies (εa > εb) which are different from the initial energies; the higher one (εa) is
higher than the higher initial orbital energy of αA, and the lower one (εb) is lower than
the lower initial orbital energy of αB .

Such changes of orbital energies are illustrated in Fig.5.7 for easy understanding; A and B at
a long distance in the initial state are placed on both ends, while the new state for A and B in a
short distance is shown in the middle of the figure.
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Figure 5.7: Orbital interactions

Amounts of the stabilization energy of (αB − εb) and the destabilization energy of (εa − αA) are
found to be the same and are denoted as ∆.

αB − εb = εa − αA = ∆ =

√
(αA − αB)2 + 4β2 − (αA − αB)

2
(5.33)

This quantity ∆ is an index indicating how much extent the stabilization and the destabilization
occur by interactions between orbitals.

In order to see what governs the extent of stabilization and destabilization ∆, let us study the
possible range of ∆. Noting the convention of αA ≥ αB, introducing a quantity t (t ≥ 0) defined
as t = (αA − αB)/2|β|, and further defining a function F (t) =

√
t2 + 1− t, we obtain

∆ = F (t)|β| (5.34)

The function F (t) decreases from F (0) = 1 monotonously with the increase of t for t ≥ 0 and
approaches 0 in the limit of t→∞, which results in 1 ≥ F (t) > 0. Thus we obtain the following
inequalities.

|β| ≥ ∆ > 0 (5.35)

The equality in the left holds for t = 0, that is αA = αB, which gives the maximum of ∆. The
magnitude of ∆ is governed by the following two factors.

(1) The principle of the energy difference
One of the factors is the energy difference between αA and αB. The smaller it becomes,
the smaller t becomes to yield the larger F (t) resulting in the larger ∆. This indicates that
the smaller energy difference between orbitals leads to the larger interactions between these
orbitals. Conversely, a very large energy difference between orbitals such as one of valence
orbitals and one of the inner shell orbitals leads to negligibly small interactions. Such an
effect by the energy difference of |αA − αB| on orbital interactions is called the principle of
the energy difference.

(2) The principle of the overlap
Another factor is |β|. When it becomes large, t becomes small to lead to a large F (t).
In eq.(5.34), ∆ is expressed as a product of F (t) and |β|. Thus, the larger |β|, the larger
∆. Since |β| can be considered to be proportional to |S|, the larger the overlap between
orbitals becomes, the larger interactions between orbitals become. Conversely, the smaller
the overlap as well as |β|, the smaller the orbital interactions. Such an effect of |β| or |S| on
the extent of orbital interactions is called the principle of the overlap.
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Next, let us consider forms of new orbitals produced by orbital interactions. From simultaneous
equations of eq.(5.23), the following equation is obtained for CA and CB.

CB

CA
=
ε− αA

β
(5.36)

Substituting εa or εb into this equation and using t = (αA−αB)/2|β| (t ≥ 0) again, we obtain the
following equation.

CB

CA
= −|β|

β
(t±

√
t2 + 1) (5.37)

The plus symbol of ± in this formula gives (CB
b/CA

b) for the bonding orbital (φb, εb), and the
minus one gives (CB

a/CA
a) for the antibonding orbital (φa, εa).

Since for the bonding orbital t +
√
t2 + 1 ≥ 1 at any value of t ≥ 0, we obtain the following

inequalities.

|CB
b| ≥ |CA

b| (5.38)
CA

bCB
bβ < 0 (5.39)

Equation (5.38) shows that in the bonding orbital φb = CA
bχA +CB

bχB, a contribution of CB
bχB

from the lower atomic orbital χB is dominant. Since the lower orbital is the more electronegative,
electrons in the bonding orbital are displaced on the more electronegative atom. This explains
the electric polarization associated with the formation of a chemical bond.

The equation (5.39) shows the constraint of the relative phases (signs) between the two orbital
components. Using the relation of the opposite signs between the overlap integral S and the
resonance integral β, we obtain

CA
bCB

bSAB ⇐⇒ −CA
bCB

bβ > 0 (⇐⇒ indicates the opposite signs to each other)

Here, we should note that the sign of the overlap integral SAB =
∫
χAχBdr is equal to the sign

of χAχB in the geometrical regions (the overlap regions) where absolute values for χAχB become
large. Thus, we obtain the following inequality.

(CA
bχA)(CB

bχB) = CA
bCB

bχAχB ⇐⇒ CA
bCB

bSAB > 0 (5.40)

This result shows that in the bonding orbital φb = CA
bχA + CB

bχB the first component CA
bχA

and the second component CB
bχB have the same sign (phase) in the overlap regions of χA and χB.

Thus, electrons in the bonding orbital brings the positive interference strengthening the electron
waves with the same sign, and hence electron densities in the overlap regions are increased. It
follows that augmented electron densities between the nuclei result in binding forces acting on the
two nuclei.

In the case of the antibonding orbital, always 1 ≥ √t2 + 1− t > 0 for t ≥ 0. Thus, we obtain.

|CA
a| ≥ |CB

a| (5.41)
CA

aCB
aβ > 0 (5.42)
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Equation (5.41) shows that in the antibonding orbital φa = CA
aχA + CB

aχB, the contribution
from the higher atomic orbital χA is dominant. Using eq.(5.42), an analogous discussion with the
case of the bonding orbital leads to the following inequality.

(CA
aχA)(CB

aχB)⇐⇒ CA
aCB

aSAB ⇐⇒ −CA
aCB

aβ < 0 (5.43)

This indicates that in the antibonding orbital φa = CA
aχA + CB

aχB the first component CA
aχA

and the second component CB
aχB have the opposite signs (phases) in the overlap regions of χA

and χB. Thus, electrons in the antibonding orbital brings the negative interference canceling out
the electron waves with the opposite signs, and hence electron densities in the overlap regions are
decreased. It follows that the decreased electron densities between the nuclei result in antibinding
forces repelling two nuclei each other.

Next, let us consider the extent of orbital mixing. When one of the coefficients is zero, the extent
of mixing is minimum. Thus, we introduce the following quantity µ representing the extent of
mixing.

µ =

∣∣∣∣∣
CA

b

CB
b

∣∣∣∣∣ =
∣∣∣∣
CB

a

CA
a

∣∣∣∣ =
√
t2 + 1− t (5.44)

The right side equals to F (t) introduced before, which satisfies 1 ≥ F (t) > 0 for t = (αA −
αB)/2|β| ≥ 0. Thus, µ increases with the decrease of t. It follows that the extent of orbital mixing
is governed by the principle of the energy difference and the principle of the overlap, as in the
case of the extent of orbital energy changes.

The mechanisms producing new orbitals from mixing of two orbitals due to orbital interactions
are summarized as rules of orbital mixing as follows.

Rules for orbital mixing When a pair of orbitals χA and χB (αA ≥ αB) having mutual
overlap (the resonance integral is not vanishing) interact with each other, a pair of new
orbitals φa and φb (εa > αA ≥ αB > εb) are produced (cf. Fig.5.7). Among them, the
bonding orbital φb is made mainly of the lower orbital χB together with a small contribution
of the higher orbital χA in the same phase. On the other hand, the antibonding orbital φa is
made mainly of the higher orbital χA together with a small contribution of the lower orbital
χB in the opposite phase. The extent of variation from the form of the main component,
namely the extent of mixing, is governed by the principle of the energy difference and the
principle of the overlap. Especially for αA = αB (a case with no energy difference), mixing
of the two components are equally weighted.

Summarizing the above mentioned rules for orbital-energy changes, rules for orbital mixing,
the principle of the energy difference, and the principle of the overlap, we denote these rules and
principles as the principles of orbital interactions.

[The principles of orbital interactions]

(1) Without orbital interactions (β = 0), the orbital energy and form remain unchanged.

(2) With nonvanishing orbital interactions (β 6= 0) (cf. Fig.5.7), both the orbital energy and the
form are changed. A bonding orbital is formed, which is stabilized than the lower (relatively
the more negative) initial orbital χB among a pair of orbitals χA and χB(αA ≥ αB). On
the other hand, an antibonding orbital is formed, which is destabilized than the higher
(relatively the more positive) initial orbital. The extent of mixing is such that the lower
orbital is the main component for the bonding orbital, whereas for the antibonding orbital
the main component is the higher one. If the energy difference between orbitals is vanishing
(αA = αB), two components are equally weighted.

(3) The extent of orbital-energy changes and orbital mixing is governed by the energy difference
and the overlap; they become larger for the smaller energy difference and the large overlap,
and conversely they become smaller for the larger energy difference and the smaller overlap.
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Example 5.1 (The two to one orbital interactions)
Two orbitals of χA and χB of one species having orbital energies of αA and αB(αA > αB)

are mutually orthogonal and interact with another orbital χC of the other species (denoted as
the partner) having an orbital energy of αC . Respective resonance energies are βAC and βBC

(βAC 6= 0, βBC 6= 0). Answer the following questions.
(1) Derive the following inequalities for three orbitals produced by interactions, which are denoted
as εa, εm, εb in the order of the higher energies.

εa > αA > εm > αB > εb

(2) Orbitals corresponding to the orbital energies of εa, εm, εb are denoted as φa, φm, φb. Explain
relative phases of the atomic orbital components χA, χB, χC in the new orbitals qualitatively,
based on the principles of orbital interactions.

(Solution)
(1) Because of the mutual orthogonality between χA and χB , SAB = 0 and thus the resonance

integral is vanishing (βAB = 0). Considering the given condition, we obtain the secular equation
for the simple Hückel method.

∣∣∣∣∣∣

αA − ε 0 βAC

0 αB − ε βBC

βAC βBC αC − ε

∣∣∣∣∣∣
= 0

Expanding this equation and denoting it as f(ε),

f(ε) = (αA − ε)(αB − ε)(αC − ε)− βAC
2(αB − ε)− βBC

2(αA − ε)

This is a cubic function of ε including −ε3. In order to know the regions giving solutions, we look
up signs of f(αA) and f(αB).

f(αA) = −βAC
2(αB − αA) > 0, f(αB) = −βBC

2(αA − αB) < 0

Thus, the equation f(ε) = 0 has different three real solutions (εa, εm, εb), as can be seen from a
figure below. Since αA > αB, εa is in the region of ε > αA, (εm) is in the region of αA > ε > αB,
and (εb) is in the regions of αB > ε. It follows that εa > αA > εm > αB > εb.

(2) According to the principle of orbital interactions (cf. Fig.5.7), the contribution of an orbital
lower than the new orbital is in the opposite phase with respect to the other orbital along an
upward arrow, and the contribution of an orbital higher than the new orbital is in the same phase
with respect to the other orbital along a downward arrow. These characteristics can be applied
to relative phases of the components in new three orbitals (from the highest, φa, φm, φb), which
are produced by interactions of the higher χA and the lower χB orbitals with the orbital χC of
the partner as follows.



CHAPTER 5. MOLECULAR ORBITAL AND MOLECULAR STRUCTURE 114

φa : With respect to χC of the partner, both χA, χB interact upward in the opposite phase to
yield a highly antibonding orbital.

φm : With respect to χC of the partner, the higher χA interacts downward in the same phase,
and the lower χB interacts upward in the opposite phase, to produce a weakly bonding or
antibonding orbital depending on the magnitude of interactions with χC.

φb : With respect to χC of the partner, both χA, χB interact downward in the same phase to
give a highly bonding orbital.

5.4 AH type and AH 2 type molecules

The principle of orbital interactions studied in the previous section can be used to deducing
form and energy levels of molecular orbitals qualitatively. Let us first summarize procedures using
the principle of orbital interactions. Then we will apply it to simple hydride molecules and study
mechanisms for production of the electric polarization in chemical bonds and mechanisms for
determination of the bond angles.

5.4.1 Procedures using the principle of orbital interactions

Let us summarize procedures using the principle of orbital interactions for various problems.
For readers who want to study from concrete examples, the next section for AH type molecules
may be studied without reading this section, and if necessary, he may come back to refer this
section.

[1] Consider electronic configurations for each system before interactions. Show energy levels to
be considered in both sides separately. Usually energy levels from inner-shell electrons to valence
electrons should be considered. Energy levels much higher than valence electron levels need not
be considered from the beginning, since interactions with valence electrons can be neglected due
to the principle of the energy difference. Treatments of inner-shell electrons are rather simple, and
thus inner-shell electrons can be disregarded except for considering the total number of electrons.
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[2] Using rules for orbital-energy changes in the principle of orbital interactions, deduce new
energy levels, and show them in the intermediate space between the initial levels in both sides.
Consider strengths of the interactions based on the principle of the energy difference and the
principle of the overlap. Levels with no appreciable interactions should be shown at the same
heights as before, since no level shifts are expected for them. Bonding orbitals should be stabilized
to the lower energy, and antibonding orbitals should be unstabilized to the higher energy.

[3] When orbital forms are needed to be considered, deduce forms of new orbitals using the
rules for orbital mixing in the principle of orbital interactions. For graphical illustrations, show
an s orbital as a circle and a p orbital as a pair of ellipses in the figure of 8. Contributions of
the components can be expressed by the size of circles and ellipses. Phases can be indicated by
plus and minus symbols, or the signs can be specified by two ways of drawings, such as solid and
dashed lines, thick and thin lines, or white and black paintings. The phase for the first component
may be arbitrarily chosen, though the relative phases of other components should be represented
in accordance with the first choice.

[4] Build up the new electronic configuration by placing electrons from both sides into new
orbitals according to the Pauli principle. In the case of degenerate levels, Hund’s rule should also
be considered. Electrons should be shown as ↑ or ↓ in the energy levels in order to represent their
spins. The choice of the spin for the first unpaired electron may be arbitrary. If spins can be
disregarded, ◦ or • may be placed in the level diagram in place of the arrows.

5.4.2 AH type molecules

Chemical bonds between different atoms have an electric polarization. In order to discuss the
electric polarization of bonds in connection with the bond formation, let us consider a H2 molecule
followed by LiH and HF molecules as typical examples of polar molecules.

H2 molecule
Show energy levels of two H atoms in the right and the left sides separately. In this case, the

electronic configuration of a H atom includes only one electron in 1s orbital, and thus only 1s
energy level should be shown in the left and the right sides as in Fig.5.8. The higher energy levels
such as 2s orbital need not be shown, since interactions of the 1s orbital with other orbitals in the
higher levels can be neglected on account of the principle of the energy difference.

Figure 5.8: Molecular orbitals of H2

Use rules for orbital-energy changes to deduce new energy levels. In this case, interactions
between two 1s orbitals of H atoms due to a σ type overlap lead to a bonding orbital of 1sσ and
an antibonding orbital of 1sσ∗. The bonding orbital is stabilized to the lower energy with respect
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to the 1s energy level of a H atom, and the antibonding orbital becomes more unstable to the
higher energy.

Use rules for orbital mixing to deduce forms of new orbitals. Interactions between equivalent 1s
orbitals lead to a couple of orbitals made of one to one mixing of two components. The bonding
orbital has the same phase, while the antibonding orbital has the opposite phase.

In the final step, two electrons from the left and the right H atoms should be placed in the new
energy levels from the lower one. In this case, the bonding 1sσ orbital accepts an electron pair,
and they produce the stabilization of two bonding electrons. Since the 1sσ orbital is composed
of even contributions of the left and the right H1s orbitals, no electric polarization appear in the
bond formed between the H atoms.

The bond in a H2 molecule is formed by augmented electron densities between two nuclei due
to a pair of electrons in a molecular orbital, and it follows that this bond can be considered as a
prototype of a covalent bond or an electron-pair bond.

LiH molecule
Show energy levels for both atoms in the right and the left sides separately. Only 1s orbital

may be considered for a H atom as in the case of a H2 molecule. For a Li atom with the electronic
configuration (1s2)(2p)1, only 1s and 2s electrons need to be considered. The Li1s orbital is an
inner-shell orbital, whose ionization energy is much larger than those for valence orbitals. On
the other hand, the energy level for the Li2s orbital is higher than that for the H1s orbital. This
situation can be understood from the fact that the ionization energy of a Li atom is much smaller
than that of a H atom, because the electronegativity of a Li atom is much smaller than a H
atom. Since the Li2p levels are not so much higher than the 2s levels, the Li2p levels had better
be considered as well. However, we omit contributions from the Li2p orbitals, because the same
conclusion will be obtained for the chemical bond of a LiH molecule. The higher levels such as
Li3s and H2s levels need not be considered, since they are considerably higher than the valence
electron levels.

Figure 5.9: Molecular orbitals of LiH

Based on the principle of the energy difference, the Li1s level, which is much lower than the H1s
level, becomes the most stable level with its orbital form unchanged from the shape of the Li1s
orbital. This new orbital is the most stable orbital classified as a σ orbital, and thus it is called 1σ
orbital. Next, one to one interactions between Li2s and H1s orbitals lead to the 2σ orbital, which
is more stable than the lower H1s orbital, and the 3σ orbital, which is more unstable than the
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higher Li2s orbital. The 2σ orbital is a bonding orbital, which is made mainly of the lower H1s
orbital together with a small contribution of the higher Li2s orbital in the same phase. Valence
electrons, one from Li and another from H, become an electron pair in the 2σ orbital for LiH.
The dominant component of this electron pair is H1s, and it follows that the electron distribution
is concentrated on the H atom to yield a strong polarization. Thus a LiH molecule is highly
ionic with the negative charge on the H atom (cf. Table 5.1). This is consistent with the larger
electronegativity of a H atom in comparison with a Li atom. The 3σ orbital is an antibonding
orbital, which is made mainly of the higher Li2s orbital.

Table 5.1: Electric polarization for diatomic molecules
Electric dipole moment Dissociation energy Equilibrium internuclear distance

Aδ+Bδ− |µ|(10−30 C m) D0(eV) R(pm)
H2 0.0 4.4781 74.144
HF 6.1 5.84 91.71
HCl 3.6 4.43 127.46
HBr 2.7 3.75 141.4
HI 1.4 3.06 160.9
LiH 19.4 2.5 159.6
LiF 21.0 6.6 156.4
NaF 27.2 5.3 192.6
NaCl 30.0 3.58 236.1

HF molecule
Electron configurations of the atoms are H(1s)1 and F(1s)2(2s)2(2p)5, and only orbitals con-

tained in these configurations may be considered (Fig. 5.10).
F1s is an innershell level, and its energy is very low. Since a F atom is more electronegative and

has larger ionization energy than a H atom, F2p level is lower than H1s level. F2s level is further
lower than F2p level. The innershell F1s orbital may be treated to have no interaction with H1s due
to the principle of the energy difference, and thus it becomes the most stable molecular orbital 1σ
in a HF molecule, whose shape is nearly the same as the shape of a F1s atomic orbital. Interactions
among valence orbitals are one to four interactions between H1s and F2s,F2px,F2py,F2pz. On
account of the symmetry for overlaps, these interactions are decomposed into the simpler ones.

H1s orbital is symmetric with respect to an arbitrary plane including the bonding axis (the
axis connecting H and F atoms is taken as z axis), and thus H1s orbital does not interact with
F2px and F2py orbitals having directions perpendicular to z axis and pararell with x and y axes.
It follows that F2px and F2py levels become degenerate 1π levels for molecular orbitals of a HF
molecule without modification from the atomic orbitals. These orbitals retain the shapes of the
F2p atomic obitals having perpencicular directions to the bonding axis. After all, the remaining
F2s and F2pz orbitals undergo two to one interactions with H1s to yield 2σ orbital, which is a
bonding orbital having a dominant component of F2s orbital in the same phase with the H1s
component and morestable than the lower F2s level. To this bonding orbital F2pz orbital gives a
samll contribution in the same phase with the H1s component to strengthen the bonding character.

Since the contribution of H1s to 2σ is small, 2σ orbital has a strong electric polarization with
the negative side on the F atom. 3σ level appears between the lower F2s and the higher F2pz
levels. 3σ orbital contains an out-of-phase contribution of the lower F2s orbital from the downward
to the upward and an in-phase contribution of the higher F2pz orbital from the upward to the
downward with respect to H1s, and the main contribution is F2pz with the nearer energy level to
result in a weakly bonding orbital having a negative electric polarization on the F atom. 4σ level
is higher than the higher F2pz and in this case much higher than H1s. 4σ orbital is composed of
out-of-phase contributions of both the higher F2pz and the lower F2s with respect to H1s, which
results in a strongly antibonding orbital having H1s orbitals as the main component.

Ten electrons, one from H and nine from F, are accommodated in the energy levels form the
lower ones as electron pairs to give an electron configuration of (1σ)2(2σ)2(3σ)2(1π)4, as can be
seen from Fig.5.10. 1σ orbital is an inner shell orbital, and hence it does not contribute to the
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Figure 5.10: Molecular orbitals of HF

bonding force. The degenerate 1π orbitals almost purely composed of atomic F2p orbitals with a
pair of electrons are nonbonding orbitals, and these may be considered as unshared electron pairs
without bonding characters. 2σ and 3σ orbitals show bonding characters, and both orbitals have
a negative electric polarization on the F atom. Thus, a HF molecule has an electric polarization
with the negative side on the F atom (Fig.5.1).

Although both HF and LiH molecules have two electrons in a bonding orbital producing an
enhancement of electron densities in the bonding regions between the two nuclei to result in a
contribution of the electron-pair bond, the bond is highly polarized as an ionic bond in a NaCl
molecule. In such a marginal case, the electron-pair bond and the ionic bond cannot clearly be
distinguished from each other.

5.4.3 AH 2 type molecules

In an AH2 type molecule such as H2O, the bond angle is an important parameter for the
molecular structure in addition to the bond length. Here, we will study composition of molecular
orbitals for AH2 type molecules from BeH2 to H2O and elucidate the mechanism for bond angles.
Now, let us construct molecular orbitals of an AH2 type molecule according to the following
procedures.

[ 1 ] Step 1 in Fig.5.11
At first, advance a H atom toward another H atom up to a distance (ca.1.4 Å) approximately

two times larger than the normal bond length of a H2 molecule. This process produces formally
a bonding 1sσ level and an antibonding 1sσ∗ level, though the level shifts for stabilization and
destabilization are small, because of a very small overlap due to the long distance. Forms of
the produced orbitals are in-phase and out-of-phase combinations of H1s components, and these
orbitals for a pseudo-hydrogen molecule are denoted as a bonding φb orbital and an antibonding
φa orbital, respectively.

[ 2 ] Step 2 in Fig.5.11
Next, introduce the A atom (Be ∼ O atoms) along a line bisecting the bond of the pseudo-

hydrogen molecule (denoted as the z-axis) from the infinity toward the center of the bond up to a
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Figure 5.11: Molecular orbitals of an AH2 type molecule (the right angle form)

distance just producing a right angle form. Via this procedure, we can easily construct molecular
orbitals for the right angle form of an AH2 molecule based on interactions between orbitals of a
pseudo-hydrogen molecule and 1s, 2s, 2p orbitals of the A atom.

[ 3 ] Step 3 in Fig.5.12
Finally, vary the bond angle θ from the right angle form to the linear form with keeping the

bond length constant, and study changes in the energy level diagram.
Composition of a right angle form AH2 molecule
Composition of molecular orbitals of the right angle form begins with a set of 1s, 2s, and 2px,

2py, 2pz orbitals for energy levels of the A atom (Be∼O atoms). Among interactions of these
orbitals with orbitals of the pseudo-hydrogen molecule, some interactions can be considered to
be negligible. First of all, the 1s orbital of the A atom can be considered as a molecular orbital
1σ with the energy and orbital form almost unchanged, based on the principle of the energy
difference, because the energy level of the inner shell 1s orbital of the A atom is very low.

Next, a direction bisecting the H–H with a right angle is taken as the z axis as shown in Fig.5.11,
a direction parallel to H–H passing through the A atom is taken to be the y axis, and the normal
direction to the y–z plane is taken as the x axis. A2px orbital is an antisymmetric orbital with its
sign alternating depending on the position up or down with respect to the y–z plane, whereas both
of 1sσ and 1sσ* orbitals are symmetric with respect to this plane. On account of the difference of
the orbital symmetries, A2px orbital does not interact with 1sσ and 1sσ* orbitals, and then A2px
orbital becomes a molecular orbital 1π of the AH2 molecule with nearly the same energy as the
atomic energy level.

The remaining interactions are classified into two types, (1) interactions among symmetric or-
bitals with respect to the x–z plane, and (2) interactions among antisymmetric orbitals with
respect to the x–z plane. For orbitals symmetric to the x–z plane, 1sσ, A2s, and A2pz orbitals
interact with each other, according to the two to one orbital interactions. The most stable level
arising from these interactions is located under the level of A2s orbital. The corresponding molec-
ular orbital 2σ includes A2s orbital as a main component in addition to a component of A2pz,
which mix with the central part of 1sσ between two H atoms in the same phase. This molecular
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Figure 5.12: Molecular orbitals of an AH2 type molecule as functions of the bond angle θ

orbital is a bonding orbital binding all three atoms mutually. The orbital energy level with an
intermediate stability arising from the two to one orbital interactions appears between A2s and
A2pz levels. This intermediate level corresponds to 4σ orbital. This orbital is composed of an
inpahse component from upward to downward for the upper A2pz as well as an out-of-phase
component from downward to upward for the lower A2s, and this orbital becomes antibonding
between A and H and weakly bonding between H and H. As mentioned below, electrons in this
orbital have an effect causing the angle ∠HAH smaller.

The most unstable level arising from the two to one orbital interactions becomes higher than
1sσ and A2pz levels. The corresponding orbital is composed of the upper A2pz and the lower A2s,
which mix with 1sσ in out-of-phase at the central part of H and H, and thus this orbital becomes
5σ molecular orbital, which is antibonding between A and H and almost nonbonding between H
and H.

Antisymmetric orbitals with respect to the x–z plane, 1sσ* and A2py, interact with each other
according to the one to one orbital interactions. The bonding orbital energy level arising from the
interactions appears lower than both of 1sσ* and A2py orbital levels, and an in phase overlap of
these two orbitals between A and H atoms gives a bonding type 3σ molecular orbital. The reason
why this 3σ is lower than 4σ will be explained below.

The most important interactions are those between A2p and H1s orbitals. In the case of the
right angle type, the direction of the p orbital component with respect to the AH bond is in the
angle of 45◦ for both 3σ and 4σ orbitals. Therefore, overlaps between A2p and H1s orbitals are
nearly the same for these cases. However, for 4σ orbital a contribution due to A2s, which overlaps
with H1s in an opposite phase contrary to the case of A2p, gives a weaker bonding character in
the AH region than 3σ. This results in the higher energy level of 4σ than that of 3σ.

The most unstable energy level is due to 6σ orbital, which is a strongly antibonding orbital
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composed of out-of-phase overlaps of 1sσ* and A2py. This level is thus much higher than 1sσ*
and A2py levels.

Changes from the right angle form to the linear form
Let us study changes of energy levels on going from the right angle form of the bond angle

θ = 90◦ to the linear form of θ = 180◦. As for the lowest level, 1σ, which is almost entirely
composed of A1s, is nearly independent of θ to give a horizontal line. Next, 2σ slightly goes
up with the increase of θ, because the in-phase overlap between two H atoms decreases and also
because the in-phase contribution of A2pz becomes vanishing at 180◦ by the symmetry. Since
the overlap between H1s and A2pz increases on going to the linear form, 3σ becomes a strongly
decreasing curve toward larger angles. On the other hand, 4σ goes upwards on going to the linear
form, because the in-phase overlap between two H atoms as well as the in-phase contribution of
A2pz decrease, and finally it becomes a moiety of the degenerate π orbitals in the linear form.
Since 1π orbital of the right angle form does not interact with other orbitals by the symmetry even
if the θ increases up to 180◦, its energy level remains to be horizontal. Although the antibonding
character of 5σ has a little change, 6σ becomes more strongly antibonding and increases its energy
on going to the linear form.

A graphic representation of orbital energies as functions of bond angles such as Fig.5.12 is called
the Walsh diagram. As discussed below, we may anticipate bond angles qualitatively based on
the Walsh diagram.

5.4.4 The Walsh diagram and the bond angle

When an electron is inserted in a level descending with the angle in Fig.5.12, it has a function
opening the bond angle, since the system tends to decrease its energy. Conversely, an electron in
a level ascending with the angle has an opposite function closing the bond angle. A horizontal
level has no effect on the bond angle, since no energy change with angles is expected irrespective
of the occupation number of electrons. Based on these principles, we can discuss a relationship
between the bond angle and the number of valence electrons for the AH2 molecule, as can be seen
in Table 5.2.

Table 5.2: Molecular structures of AH2 type molecules and electron configurations. The bond
angle and the bond lenglth for BeH2 are theoretical values obtained from accurate calculations,
since no experimental values are available. Other data are experimental values.

Number of Bond angle Bond length Electron configuration
AH2 valence electrons θ◦ RAH(pm) 1σ 2σ 3σ 4σ 1π Spin state

BeH2 4 180 133 ↑↓ ↑↓ ↑↓ Singlet
BH2 5 131 118 ↑↓ ↑↓ ↑↓ ↑ Doublet
CH2 6 136 108 ↑↓ ↑↓ ↑↓ ↑ ↑ Triplet
CH2 6 102.4 111 ↑↓ ↑↓ ↑↓ ↑↓ Singlet
NH2 7 103.4 102 ↑↓ ↑↓ ↑↓ ↑↓ ↑ Doublet
H2O 8 104.5 96 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ Singlet

In BeH2 there are four valence electrons, two from a Be atom and one from each H atom, and
thus two levels up to 3σ are doubly occupied. Since 3σ level is steeply descending to the larger
angles as can be seen from Fig.5.12, the linear form with a bond angle of 180◦ is most stable for
BeH2.

There are five valence electrons in BH2, and one electron is added into 4σ level in comparison
with BeH2. Careful studies on the angular dependence of overlaps between p and s orbitals lead
to a conclusion that the energy change between 90◦ and 180◦ for 4σ is twice as large as that for
3σ. It is thus expected that one electron in 4σ nearly cancels out effects of two electrons in 3σ.
This indicates that the bond angle of BH2 may be in the middle of 90◦ and 180◦, which is in good
agreement with the observed angle of 131◦.

Methylene CH2 has one more electron. Based on the right angle form, doubly occupied levels
from 1σ to 4σ results in a singlet state of methylene, which is expected to have a much smaller
bond angle than 131◦ in BH2. The observed bond angle 102.4◦ for a singlet methylene is really
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much smaller than the bond angle of BH2. On the other hand, in the linear structure, 4σ and
1π have the same energy to degenerate. Thus, Hund’s rule suggests a triplet state in which one
electron added as an unpaired electron into 1π has a parallel spin with that of an unpaired electron
in 4σ. In a triplet methylene, levels from 1σ to 3σ are doubly occupied, whereas 4σ and 1π are
singly occupied. An electron in the 1π level with a constant energy has no effect on the bond
angle. It follows that the bond angle of a triplet methylene is expected to be nearly equal to
the angle of BH2 (131◦), which agrees well with the really observed angle of 136◦ for a triplet
methylene.

Further addition of an electron leads to an amino radical NH2 with seven valence electrons. In
this case, one electron addition to either methylene results in the same electron configuration, in
which levels from 1σ to 4σ are doubly occupied, while an electron occupies 1π level. Since 1π
electron is not related to bond angle changes, the bond angle of NH2 is expected to be nearly
the same as the bond angle for the singlet methylene (102.4◦) with an electron configuration of
fully occupied levels up to 4σ, which is in good agreement with the really observed bond angle of
103.4◦ for NH2.

In the last H2O of the series, all levels up to 1π are doubly occupied. As 1π electrons are not
related to the bond angle, the bond angle of H2O is expected to be similar to those for the singlet
methylene (102.4◦) and NH2 (103.4◦). This expectation agrees well with the observed angle of
104.5◦ for H2O.

5.5 A 2 type molecules

There are many types of bonds with various strengths. It is interesting to study how such
varieties of chemical bonds are formed. In this section, let us qualitatively construct molecular
orbitals and their energy levels of A2 type molecules and study electron configurations and bond
orders.

Figure 5.13: Orbital interactions in A2 type molecules
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A diatomic molecule A2 composed of the same kind two A atoms is denoted as the homonuclear
diatomic molecule. Since larger overlaps and smaller energy differences give stronger orbital
interactions, construction of molecular orbitals of an A2 molecule can be started with simple
interactions between couples of the same type orbitals to obtain Fig.5.13. In-phase combinations
yield bonding orbitals of σs, σp, πp, and out-of-phase combinations give antibonding orbitals of
σs∗, σp∗, πp∗. πp and πp∗ orbitals are composed of π type overlaps of p orbitals with directions
vertical to the bonding axis z. Thus, two types of p orbitals with directions of x and y axes lead
to the two-fold degeneracy for πp and πp∗ orbitals.

In many electron atoms, orbital energy levels are in the order of ns < np, and overlaps between
orbitals are in the order of πp < σp. It follows that when the energy difference between ns and np
levels (ns− np energy gap) is very large, energy levels for an A2 type molecule can be expressed
by Fig.5.13 or Fig.5.14(a), σp becomes more stable and lower than πp. On the other hand, σp∗
becomes higher than πp∗. Fig.5.13 or Fig.5.14(a) expresses the standard pattern of energy levels
in A2 type molecules with large ns− np energy gaps. This pattern can be applied to right hand
atoms in the periodic table.

In left hand atoms in the periodic table, interactions between s orbitals and p orbitals become
significant, because ns − np energy gaps are small as shown in Fig.5.14(b). It follows that the
same symmetry orbitals, (σs, σp) and (σs∗, σp∗), mix with each other to yield modified energy
levels. Rules for mixing in orbitals can be summarized as follows.

(1) The lower orbital increases its bonding character (or decrease its antibonding character) to
decreases its energy.

(2) The higher orbital increases its antibonding character ( or decrease its bonding character)
to increases its energy.

Figure 5.14: Energy levels for homonuclear diatomic molecules



CHAPTER 5. MOLECULAR ORBITAL AND MOLECULAR STRUCTURE 124

For example, the more stable σs is formed by a little mixing of σp into σs in order to increase
in-phase overlap in the middle regions between two nuclei. The more stable σs∗ is produced by
a little mixing of σp∗ into σs∗ so that out-of-phase overlap may be decreased to strengthen the
bonding character relatively. Modified energy levels for A2 type molecules make the σp level
higher than the πp∗ level in comparison with the standard form.

Whether a chemical bond is formed or not depends on the electron configuration in the energy
levels of Fig.5.14(a) or (b). As a qualitative index that indicates the strength of the bond in an
A2 type molecule, the bond order can be defined by the following equation.

P =
(number of electrons in bonding orbitals− (number of electrons in antibonding orbitals)

2
(5.45)

According to this equation, a pair of bonding electrons give a bond order of unity. In this equation,
a pair of electrons in an antibonding orbital decrease the bond order by one. This definition of
the bond order is a useful index to understand the multiplicity of electron-pair bonds(covalent
bonds).

Let us compose electron configurations based on Fig.5.14 and obtain bond orders by using
Eq.(5.45). H2 has an electron configuration of (σ1s)2, and its bond order is given as P = (2−0)/2 =
1. Thus the hydrogen molecule has a single bond with a pair of bonding electrons. He2 has an
electron configuration of (σ1s)2(σ1s

∗)2 leading to a bond order of P = (2− 2)/2 = 0. P = 0 does
not give a stable chemical bond. In the case of Li2, σ2s orbitals contain electrons (see Fig.5.15), the
electron configuration becomes (σ1s)2(σ1s

∗)2(σ2s)2. In this expression, inner core 1s electrons of
(σ1s)2(σ1s

∗)2 corresponds to the electron configuration for He2. This part gives no contribution to
the bond order. Thus, only valence electrons are significant in the bond order. The configuration
of valence electrons in this case is (σ2s)2, and thus the bond order for Li2 becomes P = 1 as in
the case of (σ1s)2 in H2. In general, a homonuclear diatomic molecule of the first Group element
(H, Li, Na, K, etc.) in the periodic table has an electron configuration of (σns)2 (n = 1, 2, 3, · · · ),
and atoms are connected by a single bond of P = 1.

In Be2 σ2s
∗ also contains a pair of electrons, and the valence electron configuration becomes

(σ2s)2(σ2s
∗)2 to give P = 0, which means no chemical bond as in the case of He2. Similarly, a

homonuclear diatomic molecule of the second Group element of the periodic table is expected not
to form a stable molecule. However, diatomic molecules of Mg2 and Ca2 do exist though their
bonds are thermally unstable to decompose very easily. The dissociation energy D0 of Ca2 is only
0.13 eV, which is 3% of D0(4.478 eV) of H2.

Figure 5.15: Valence electron configurations for Li2 −Ne2

B2 has six valence electrons, and the last two electrons are contained in either π2p or σ2p. In
the case of a B atom, the s-p gap is so small that the modified type of energy levels in Fig.5.14
should be used, and degenerate π2p levels accept two electrons. It follows that the valence electron
configuration of B2 becomes to be a triplet with a pair of unpaired electrons with a parallel spin
owing to Hund’s rule as can be seen in Fig.5.15. Thus, a group of B2 molecules show paramagnetic
properties that an application of a magnetic field yields a magnetization along the direction of
the field. In B2, contributions to the bond order from (σ2s)2 and (σ2s

∗)2 cancel out each other,
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and then only a contribution from (π2p)2 remains to give P = 1. Therefore, a B2 molecule has a
π bond, which is considered as a single bond with a bond order of 1.

In C2 π2p accepts electrons prior to σ2p as in the case of B2, and the π2p orbital becomes
the HOMO. The chemical bond in C2 is a double bond P = 2 composed of two π bonds. It
is interesting to compare B2 and C2 molecules. The dissociation energy of a doubly bonded C2

molecule (6.21 eV) is nearly twice as large as that of a B2 molecule (3.02 eV). The equilibrium
bond length of C2 is much shorter than B2.

N2 is just at the border of the standard and the modified types in Fig.5.14. Either type gives
the bond order of P = 3 for the bond of a N2 molecule, which is a triple bond made up of two π
bonds and one σ bond. Experiments such as photoelectron spectroscopy give a confirmation that
the HOMO is σ2p rather than π2p, which indicates that the modified levels are more consistent
with the observation. The dissociation energy of a N2 molecule (9.759 eV), which is slightly larger
than triple times of the dissociation energy of B2 (3.02 eV), is the largest among homonuclear
diatomic molecules.

In O2 the standard type should be used because of the large 2s-2p gap, and hence the degenerate
antibonding π2p

∗ orbitals become to be the HOMOs to yield a triplet type electron configuration.
The bond order of O2 should be decreased by one from that of N2, because two additional electrons
are accommodated in the antibonding orbitals, and thus an O2 molecule has a double bond made
up of one π bond and one σ bond. The electron configuration of O2 is a triplet of two unpaired
electrons with a parallel spin as in the case of B2, and it follows that oxygen has paramagnetic
properties. In F2 further addition of two electrons in π2p

∗ orbitals decreases the bond order by
one from that of O2, which makes a single bond of a σ bond.

In the electron configuration of Ne2, electrons fully occupy up to σ2p
∗, and bonding characters

gained by bonding orbitals are completely canceled by antibonding electrons to result in a bond
order of P = 0. It follows that a stable Ne2 molecule is expected not to exist as in the case of He2.
However, Ne2 really exists under a special condition in which thermal effects are not effective to
decompose molecules. The dissociation energy of Ne2 is very small as 0.0036 eV, which is about
one tenth of the kinetic energy of a molecule in gaseous state at room temperature.

Table 5.3 lists valence electron configurations, bond orders, dissociation energies, equilibrium
nuclear distances for homonuclear diatomic molecules and some of their ions. When properties are
compared among A2 type molecules of the same row elements, the larger the bond order becomes,
the larger the dissociation energy becomes, and then the shorter the bond length (equilibrium
internuclear distance) becomes. When a comparison is made among A2 type molecules of the same
Group elements, the bond strength for P > 0 is larger for the higher elements. This indicates that
upper row atoms have compact electron orbitals to result in shorter distances between augmented
electron densities in the bonding region (the covalent electron pair) and two nuclei, which causes
strong binding forces between the nuclei. Very weak bonds of P = 0 such as Mg2, Ca2, Ne2, and
Ar2 are quite different from the usual electron-pair bonds (covalent bonds), and their dissociation
energies become larger on going to the lower rows in the periodic table.

Example 5.2 Obtain the bond order P of O2
+. Compare the dissociation energy D0 and the

bond length R of O2
+ with those of O2 and N2.

(Solution) The electron configuration of O2
+ is given by (σ2s)2(σ2s

∗)2(σ2p)2(π2p)4(π2p
∗)1, in which

the number of electrons in π2p
∗ is decreased to one from two in the case of O2. Noting 8 electrons

in bonding orbitals and 3 electrons in antibonding orbitals, we obtain the bond order of O2
+ as

P (O+
2 ) = (8− 3)/2 = 2.5.

Since O2 has one more antibonding electron than O2
+, the bond order of O2 can easily be

obtained as P (O2) = 2. In N2 an antibonding electron is removed from the electron configuration
of O2

+, and thus P (N2) = 3. In general, the larger P becomes, D0 becomes larger and R becomes
smaller. It follows that we obtain the following conclusions (see Table 5.3).

Dissociation energy D0(N2) > D0(O2
+) > D0(O2)

Bond length R(N2) < R(O2
+) < R(O2)
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Table 5.3: Electron configurations and structures for homonuclear diatomic molecules and ions

Molecule Valence electron configuration Bond order Dissociation energy Bond length
σ2s σ2s

∗ σ2p π2p π2p
∗ σ2p

∗ D0(eV) R(pm)
H2 2 1 4.4781 74.144
He2 2 2 0
Li2 2 1 1.046 267.29
Be2 2 2 0
B2 2 2 2 1 3.02 159.0
C2 2 2 4 2 6.21 124.25
N2 2 2 2 4 3 9.759 109.77
O2 2 2 2 4 2 2 5.116 120.75
F2 2 2 2 4 4 1 1.602 141.19
Ne2 2 2 2 4 4 2 0 0.0036 309
Na2 2 1 0.73 307.9
Mg2 2 2 0 0.0501 389.1
Si2 2 2 2 2 2 3.21 224.6
P2 2 2 2 4 3 5.033 189.34
S2 2 2 2 4 2 2 4.3693 188.92
Cl2 2 2 2 4 4 1 2.4794 198.8
Ar2 2 2 2 4 4 2 0 0.0104 376
K2 2 1 0.514 390.51
Ca2 2 2 0 0.13 427.73
Br2 2 2 2 4 4 1 1.9707 228.11
Kr2 2 2 2 4 4 2 0 0.0160 400.7
I2 2 2 2 4 4 1 1.5424 266.6
Xe2 2 2 2 4 4 2 0 0.0230 436.2
H2

+ 1 0.5 2.648 106.0
He2

+ 2 1 0.5 2.365 108.1
N2

+ 2 2 1 4 2.5 8.71 111.64
O2

+ 2 2 2 4 1 2.5 6.663 111.64
Ar2

+ 2 2 2 4 4 1 0.5 1.33 248
Kr2

+ 2 2 2 4 4 1 0.5 1.15 279
Xe2

+ 2 2 2 4 4 1 0.5 1.03 317
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5.6 Hybridization of orbitals

In the preceding sections, we studied some examples how orbitals are mixed to form new orbitals
via orbital interactions. In some cases, both of two orbitals in one atom interact with an orbital
in the other atom. In such cases, new orbitals can be considered to be produced from interactions
of hybrid orbitals composed of two orbitals in one atom with orbitals of the other atom. In this
section, we will study hybridization of orbitals and some applications of hybrid orbitals.

5.6.1 Mixtures of orbitals in the same atom

Let us study effects of mixtures of orbitals in the same atom. As shown in Fig.5.16(a), a mixture
of px and py orbitals becomes equivalent with a p orbital with a direction rotated in the x − y
plane. The direction depends on coefficients of the linear combination, and any direction within
the plane including the axes of the two p orbitals is possible. a mixture of three p orbitals, px, py,
and pz, may produce a p orbital with arbitrary direction in the full three dimensional space. It is
thus possible to reorganize p orbitals to produce the most suitable linear combination to overlap
efficiently with the orbital of the incoming atom or molecule, even if the other species comes from
any direction. Basically, selection of directions of p orbitals or choice of coordinates can be made
arbitrarily for computational convenience. However, essential characteristics of orbital interactions
do not depend on the choice of the coordinate system, and this nature of orbital interactions can be
denoted as the invariance in the coordinate system. Reorganization of p orbitals is an important
property that guarantee the invariance in the coordinate system.

Next, we will study mixtures of an s orbital and p orbitals of the same atom. Since a mixture
of p orbitals is equivalent to one p orbital with a suitable direction, we only need to consider a
mixture of one s orbital and one p orbital. The result can be seen in Fig.5.16(b); a constructive
effect occurs in the direction where phases coincide for s and p orbitals, whereas the mixing effect
is destructive in the opposite direction. These effects result in a production of a big lobe at the
in-phase direction together with a small lobe at the opposite direction. Such an augmentation
of directional properties associated with mixture of the same atom orbitals to produce a highly
directional orbital is denoted as hybridization, and produced orbitals are called hybridized orbitals
or hybrid orbitals.

Figure 5.16: Mixing effects of the same atom orbitals. (a) Directional change on mixture of p
orbitals with different directions. (b) Augmentation of direction on mixture of s orbital and p
orbital (the hybridization effect).
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Hybrid orbitals have the following important characteristics related to formation of chemical
bonds.

[Characteristic features of hybrid orbitals]

(1) Directionality becomes higher, and the overlap with a coming species from the direction
increases.

(2) The electron distribution of itself becomes asymmetric, and electron densities at the aug-
mented direction become higher to produce a strong attractive force between its nucleus and
the incoming nucleus.

Although many textbooks comment only on the feature (1), the feature (2) is also very impor-
tant, as easily be understood from Feynman’s electro static theorem in Section 4.2. In addition,
a mixture of 2p orbitals into 1s orbital as well as a mixture of 3d orbitals into 2s and 2p orbitals
also have some effects mentioned above.

Such mixing effects of higher orbitals other than valence orbitals on deformation of electron dis-
tributions around an atom are denoted as polarization effects. Additional functions with higher
azimuthal quantum numbers other than valence orbitals to improve basis functions are called
polarization functions. In comparison with hybridization effects of orbital mixing among orbitals
of the same principal quantum number, polarization effects are rather moderate by the principle
of the energy difference, since polarization effects involve orbitals with higher principal quan-
tum numbers. Calculations with minimal basis sets which only contain valence orbitals include
hybridization effects but neglect polarization effects.

5.6.2 sp hybridization

One to one hybridization of valence s and p orbitals gives sp hybrid orbitals, which are composed
of mutually orthonormal two orbitals expressed as follows.

φa = s+z√
2

φb = s−z√
2

(5.46)

Here, we used (pz) orbital as the p orbital. pz and s orbital functions are expressed simply as z
and s. Two hybrid orbitals in eq.(5.46) are equivalent for their energies and shapes, though the
directions are different with a mutual angle of 180◦ as can be seen in FIg.5.17. The energy of
sp hybrid orbitals εsp is just an average value of orbital energies of s and p orbitals, which are
expressed as αs and αp, respectively.

εsp =
αs + αp

2
(5.47)

sp hybrid orbitals lead to linear molecules of A−B−C or A−B−C−D (such as BeCl2,HgBr2,HCN,C2H2)
linearly connected by σ bonds with bond angles of 180◦. In HCN and C2H2, in addition to CNσ
and CCσ bonds formed by sp hybridization two sets of π bonds due to πtype overlaps by p or-
bitals with directions parallel to the σ bond, and it follows that triple bonds of C≡N and C≡C
are formed.

5.6.3 sp2 hybridization

From one s orbital and two p orbitals (px and py orbitals, whose functions are expressed simply
by x and y), we can construct a set of three hybrid orbitals, φa, φb, φc, which are equivalent in
energies and shapes with directions mutually 120◦ displaced within a plane (Fig.5.17) and denoted
as sp2 hybrid orbitals.

φa = 1√
3
s +

√
2
3x

φb = 1√
3
s− 1√

6
x + 1√

2
y

φc = 1√
3
s− 1√

6
x− 1√

2
y

(5.48)
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Figure 5.17: spn hybrid orbitals (n = 1, 2, 3)

These orbitals satisfy the orthonormality. Since electron density is proportional to |φ|2, squares of
atomic orbital coefficients give relative magnitude of s and p components; the s orbital component
is estimated as (1/

√
3)2 = 1/3, and the p orbital component is (

√
2/3)2 = (1/

√
6)2 + (1/

√
2)2 =

2/3. It follows that s : p = 1 : 2. The energy of sp2 hybrid orbitals εsp2 is an average value of
orbital energies of s and p orbitals with weights of s : p = 1 : 2.

When sp2 hybrid orbitals make three σ bonds with other species in the directions of 0◦, 120◦, 240◦,
they produce triangle form molecules such as NH3

+,BH3,BF3 with all bond angles of 120◦ and
ethylene C2H4 in which angles are slightly deformed form 120◦, ∠HCH = 117.5◦. Benzene C6H6

can also be produced by sp2 hybridization. In ethylene and benzene, π type overlaps between
out-of-plane p orbitals which are not involved in sp2 hybridization yield π bonds. Thus, an ethy-
lene molecule has a CC double bond. Six CCπbonds in benzene are equivalent, and they have an
intermediate character between a single bond and a double bond, which can be confirmed from
bond-orders by molecular orbital methods.

5.6.4 sp3 hybridization

From one s orbital and three p orbitals (orbital functions are expressed simply by x, y, and z),
we can construct a set of four hybrid orbitals, φa, φb, φc, φd, as shown in Fig.5.17. Energies and
shapes of these orbitals are equivalent, and they are directed to four corners from the center of a
tetrahedron.

φa = s+x+y+z
2

φb = s+x−y−z
2

φc = s−x−y+z
2

φd = s−x+y−z
2

(5.49)

These orbitals satisfy the orthonormality. The electron density is proportional to |φ|2. Thus,
squares of atomic orbital coefficients give relative magnitude of s and p components. The s orbital
component is estimated as (1/2)2 = 1/4, and the p orbital component is (1/2)2 × 3 = 3/4. It
follows that s : p = 1 : 3. The energy of sp3 hybrid orbitals εsp2 is an average value of orbital
energies of s and p orbitals with weights of s : p = 1 : 3.

εsp3 =
αs + 3αp

4
(5.50)

When sp3 hybrid orbitals make four σ bonds with other species, they produce tetrahedral
molecules such as CH4, SiH4,NH4

+ with the tetrahedral bond angles of 109.47◦.
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5.6.5 other types of hybridization

In addition to the above hybrid orbitals, some other types of hybrid orbitals involving d or-
bitals are important. As shown in Table 5.4, they are related to formation of various molecular
structures.

Table 5.4: Hybridization and moelcular structures

Hybrid orbital Structure Bond angle Example
sp Linear form 180◦ C2H2,HCN,BeH2,HgCl2
sp2 Equilateral traiangle 120◦ BF3,NH3

+,C6H6

sp3 Tetrahedron 109.47◦ CH4,NH4
+, SiH4, SO4

2−

dsp2 Square plane 90◦ Ni(CN)4
2−
,AuCl4−

sp3d Trigonal-bipyramid 90◦ 120◦ 180◦ PCl5,AsF5, SbCl5 (Note)
d2sp3 Octahedron 90◦ Co(NH3)6

3+
,PtCl62−

sp3d2 Octahedron 90◦ SF6

(Note) The trigonal-bipyramid structue of PCl5 can be explained by
three-center-two electron bonds as discussed below.

Example 5.3 Explain the molecular structure of ethylene C2H4 using hybrid orbitals.

(Solution) In each C atom, three sp2 hybrid orbitals together with a perpendicular p orbital can
be considered for valence orbitals, and four valence electron are inserted in either one of the four
orbitals. A combination of sp2 hybrid orbitals of two C atoms yields a CC bond due to σ type
overlaps. Remaining two sp2 hybrid orbitals with angles of 120◦ with respect to the CC bond axis
can be used to form a pair of CHσ bonds of σ type overlaps, which results in a production of a
CH2 unit. In this step, two CH2 units can rotate with each other along the CC bond axis, since
the CC bond is a single bond, which can rotate freely to have an arbitrary angle of the rotation.

However, an overlap between a pair of p orbitals remaining at each C atom produces a CC
bond due to the π type overlap, which is most effectively formed, when the p orbitals have
parallel directions, namely two CH2 become coplanar. Thus, between two C atoms, one CCσbond
between two sp2 hybrid orbitals and additionally one CCπ bond from a pair of parallel p orbitals
are formed to give a CC double bond. On account of the restriction of the rotation around the CC
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axis by the π bond, all six atoms are located in a plane, and it follows that an ethylene molecule
has a planar structure.

Effects of electrostatic attractive forces due to bonding electrons on the carbon nuclei are much
stronger in the CC double bond than in CH single bonds. Thus the pulling forces by the bonding
electron densities are stronger along the double bond, and hence the HCH bond angle (the bond
angle between two CH bonds) should become a little smaller than 120◦ so that resultant forces
from electron densities in two CH bonds may be balanced with the opposite force cause by the
electron densities in the CC double bond; really the observed HCH angle is 117.5◦.

5.7 The three-center-two-electrton-bond and the hydrogen
bond

As studied in the earlier parts of this chapter, a pairing of electrons is not necessary to bind
two nuclei by attractive forces caused by electron densities located at middle regions between the
nuclei. It is important for formation of bonds how electron densities distribute in the bonding
regions between the nuclei. In this section, we will study bonds of three atoms formed by an
action of two electrons.

5.7.1 Three center orbital interactions

Let us study orbital interactions involved in a system of three atoms, A, B, and C, in which C
is the middle, using the simple Hückel molecular orbital metohd. An orbital of C χC can interact
with orbitals χA, χB of both ends of A and B, where resonance integrals are βAC 6= 0, βBC 6= 0.
Since the resonace integral for the long distance can be neglected, βAB = 0. Coulom integrals for
these atoms are denoted as αA, αB, αC. The secular equation to obtain molecular orbitals is given
as follows. ∣∣∣∣∣∣

αA − ε 0 βAC

0 αB − ε βBC

βAC βBC αC − ε

∣∣∣∣∣∣
= 0 (5.51)

This is just the same as the secular equation in Example 5.1 (the two to one orbital interactions)
in section 5.3. Thus, among the new orbitals produced by the interactions of three orbitals, the
most stable orbital φb becomes lower than the lower one of χA, χB, and the most unstable orbital
φa becomes higher than the higher one of χA, χB, as can be seen from Fig.5.18.
φb is a highly bonding orbital, which is composed of the same phase combinations of the

central atomic orbital with those of both ends in order to increase electron densities in the middle
regions between nuclei. φa is a highly antibonding orbital, which is made of the opposite phase
combinations of the central atomic orbital with those of both ends in order to exclude electron
densities out of the middle regions between the nuclei. On the other hand, the new orbital with
intermediate stability φm is formed in an intermidiate level between the levels of orbitals for both
ends. If orbitals of both ends degenerate, the level of the intermediate orbital is equal to the
degenerate levels. In the shape of φm, the higher one mixes with the central orbital in the same
phase, and the lower one mixes with the opposite phase. This leads to a weakly bonding character
in φm, as shown in Fig.5.18(a). It should be noted that, if orbitals of both ends are degenerate,
one of them might be in the same phase, but the other necessarily becomes in the opposite pahse.
By symmetry in the degenerate case, the contiribution from the the central atom is completely
vanishing in φm as shown in Fig.5.18(b), thus φm becomes almost nonbonding, because direct
interactions between both ends are negligibel from the distance.

When an electron is included in the bonding orbital φb of the three-center interactions, three
atoms can be connected with their neighbors. A pair of electrons in φb gives the more strong
bonding. Such types of bonds produced by a pair of electrons in the bonding orbital of the three
center are called the three-center-two-electron-bond. Now, let us stuy some examples.
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Figure 5.18: Three center orbital interactions

5.7.2 Linear three-center-two-electron-bonds

Putting fluorine F atoms on both sides of a xeone Xe atom, we can obtain a XeF2 molecule,
in which a pair of electrons in a 5p orbital of a Xe atom interact with unpaired electrons in 2p
orbitals of two F atoms aligned linearly with the central Xe atom.

:
..
F. : + :

..
Xe.. : + :

..
F. : −→ F−Xe− F

Relevant energy levels can be summarized in Fig.19.
Ionization energies of a Xe atom and a F atom are 12.1 eV and 17.4 eV, respectively. Thus,

Xe5p orbitals have higher energy levels than F2p orbitals. F2p orbitals do not interact each other
because of the long distance and shown in the left-hand side of Fig.5.19. An electron-pair in the
bonding molecular orbital φb is displaced nearer to the lower energy F2p, and a Xe atom and a F
atom are bonded by electron densities of an electron. The molecular orbital of the intermediate
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Figure 5.19: Three center two electron bonds in XeF2

stability φm can be considered as a nonbonding orbital, and a pair of electrons in this orbital have
no effects on the bonding and they are distributed on both F atoms, one by one in average. It
follows that XeF2 has linear three-center-two-electron-bonds with a bond-order of 1/2 for each
XF bond. Although these bonds are also denoted as the three-center-four-electron-bonds, they
are essentially the three-center-two-electron bonds.

Replacing a Xe atom by an iodide ion I− with the same electron configuration and also replacing
F atoms by other halogen atoms I or Cl, we can obtain linear molecular ions of I−3 and ICl−2 shown
in Fig.5.20. In XeF2, one electron-pair of a 5p orbital is used for a set of three-center-two-electron-
bonds. Here, another electron-pair of other 5p orbitals can also be used to produce another set of
three-center-two-electron-bonds with a different direction. These two sets of three-center-bonds
yield a square planar form of XeF4 (Fig.5.20). One more set of the electron-pair in Xe5p can
also be used to obtain XeF6. The observed form of XeF6 is slightly distroted from the expected
octahedral shape.

Figure 5.20: Various shapes of molecular structures

There are many other examples for the three-center-two-electron-bonds composed of an electron-
pair in a p orbital and a couple of unpaired electrons in halogen atoms. In a PCl5 molecule, each of
three sp 2 hybrid orbitals around the P atom has an unpaired electron and makes an electron-pair
bond with an unpaired electron in a Cl atom. It follows that an equilateral triangular form is
produced. Remaining two electrons among five valence electrons of the P atom are in a vertically
directed 3p orbitals as an electron-pair, which may be used to form a set of three-center -two-
electron-bonds with unpaired electrons in two Cl atoms. Thus a trigonal bipyramidal molecule
can be produced (Fig.5.20). Three covalent PCl bonds with a bond-order of unity in the triangle
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plane are denoted as equatorial bonds (experimental bond-length is 201.7 pm), which are stronger
and much shorter than two vertical PCl bonds denoted as axial bonds (experimental bond-length
is 212.4 pm), since these bonds are weak bonds with a bond-order of 1/2. Although the trigonal
bipyramidal structure of PCl5 can be explained by hybrid orbitals in Table 5.4, it becomes difficult
to explain differences in the bond lengths.

As similar examples including sp2 hybrid orbitals together with a vertical p orbital leading
to a set of three-center-two-electron-bonds, AB3 type molecules, such as ClF3 and BrF3 can be
produced. In these cases, the hybrid orbitals of the central halogen atom are composed of one
unpaired electrons and two electron-pairs, and the unpaired electron is able to form a covalent
bond with an unpaired electron in a F atom. Two electron-pairs in the hybrid orbitals become
unshared electron-pairs. A p orbital vertical to the plane of hybridization contains an electron-
pair, which can be used to produce a set of three-center-two-electron-bonds with two F atoms.
Thus a T shaped molecule shown in Fig.5.20 can be formed. The horizontal line of the T shape is
made of three-center bonds, and therefore the distances from the central atom in the horizontal
bonds are longer than the vertical bonds (covalent bonds). Unshared electron-pairs made of hybrid
orbitals are more tightly attracted with the central atom than the electron-pair in the covalent
bond, and it follows that the central atom is pulled upward to give a slightly deformed form like
an upward arrow ↑.

Example 5.4 The molecular structure of BF5 is a form of the following figure. Using a combi-
nation of covalent bonds and three-center-two-electron-bonds, explain the molecular structure of
this molecule.

(Solution) The outer-most shell electron configuration of a Br atom is (4s)2(4p)5. In a Br atom,

4px and 4py orbitals contain an electron-pair, and a pair of sp hybrid orbitals composed of 4s
and 4pz orbitals are formed. One of the sp hybrid orbitals (towards lower) contains an electron-
pair, and another one (towards upper) contains an unpaired electron. On the other hand, each
F atom has an unpaired electron in a p orbital. An unpaired electron of the sp hybrid orbital
in the z direction can form a covalent bond coupled with a F atom. 4px and 4py orbitals of the
Br atom can be used to produce three-center-two-electron-bonds with F atoms in both x and y
directions, and a square structure where four F atoms are placed on the corners is formed. The
BrF bond directed upward is a strong covalent bond with a shorter bond length (the observed
bond length is 171.8 pm), and BrF bonds in the horizontal plane are weak bonds due to three-
center-two-electron-bonds with a longer bond length (the observed bond length is 178.8 pm). The
Br atom is slightly displaced to the downward from the plane of the square, since the downward
directed electron-pair pulls the Br atom more strongly than the upward directed electron-pair in
the covalent bond does (the observed angle is ∠F(horizontal)BrF(vertical) = 85.1◦). Alternatively
an octahedral structure by sp3d2 hybridization can be assumed, but the short axial bond of the
square pyramid will become difficult to be explained.
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5.7.3 Bent three-center-two-electron-bonds

An interesting example includes bent three-center bonds with a H atom in the middle. Such a
bond can be seen in hydrated compounds of boron (generally called borane). Diborane B2H6 is
a typical example. There are two BHB bonds in a diborane molecule, and the geometrical shape
has a bridge structure as shown in Fig.5.12.

Figure 5.21: The bridge structure in diborane B2H6

For the B atoms sp3 hybridization can be assumed. Two of the four sp3 hybrid orbitals have
unpaired electrons, one has an electron-pair, and the remaining one is a vacant orbital with no
electron. Each of two unpaired electrons makes a covalent BH bond with a H atom, whose bond-
order is unity. In the bridge structure, an unpaired electron in a H atom in the middle interact with
an electron-pair in a B atom and also with a vacant orbital of another B atom to give energy levels
shown in Fig.5.22, since the ionization energy of a H atom is much larger than a B atom. Orbital
interactions yield bent orbitals as shown in the figure. Only the bonding orbital φb contains an
electron-pair. The B atoms and a middle H atom are bonded by three-center-two-electron-bonds
with a bond-order of 1/2. Depending on the difference in the bond-orders, bridge BH bonds have
longer bond lengths than the terminal BH bonds.

Figure 5.22: Molecular orbitals of diborane
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5.7.4 The hydrogen bond

When a H atom bonded to a strongly electronegative atom X makes a new bond with another
electronegative atom Y, such a bond is called the hydrogen bond. The hydrogen bond can also
be considered as a sort of the three-center-two-electron-bonds. In this case, the unpaired electron
energy level is rather high in comparison with valence orbitals of the electronegative atoms, and
energy levels in Fig.5.23 are obtained. In this figure negative atoms X and Y are shown in the
same side for convenience, though they are separated in a long distance and may be different
in their energies. The electron-pair in the bonding orbital φb connect three atoms via the H
atom. The XH bond becomes rather weaker than the case without the hydrogen bonding. When
the negativity of the Y atom is not strong enough, the electron-pair of the bonding φb orbital
concentrates its electron densities on the XH bond. The electron-pair of the φm orbital is almost
nonbonding, and it has no effect on formation or dissociation of the hydrogen bond.

Figure 5.23: The hydrogen bond

5.8 Electron energy levels and photoelectron spectra

As studied in section 4.3, the orbital energy εi can be related with the observed ionization
energy Ii via Koopmans formula.

Ii = −εi (5.52)

This relationship is approximate, and the exact numerical agreement cannot be expected. As far
as molecules with the singlet ground electronic states are concerned, observed ionization energies
have been found to give a satisfactory one-to-one correspondence with energy levels of molecular
orbitals. In this section, we will study relationships among photoelectron spectra, ionization
energies, and energy levels of molecular orbitals. A photoelectron spectrum of the hydrogen
molecule will also be studied in connection with the dissociation energies.

5.8.1 Photoelectron spectra and electron energy levels of molecular or-
bitals

The kinetic energy 1
2mv

2 of a photoelectron ejected from a substance irradiated by a photon of
hν with a frequency ν in the photoelectric effect can be given by the following formula.

1
2
mv2 = hν − Ii (5.53)

Here, Ii is the ionization energy of the substance. Using Koopmans’ formula we obtain

1
2
mv2 = hν + εi (5.54)

Thus, the kinetic energy of the photoelectron depends on the energy level of the molecular
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Figure 5.24: Relationships between photoelectron spectra and electron energy levels of molecular
orbitals

orbital from which the photoelectron is ejected. It follows that measurements of kinetic energy
distributions of photoelectrons caused by a given energy photons hν give a photoelectron spectrum,
which correspond to energy levels of molecular orbitals, as illustrated in Fig.5.24.

In general, a method measuring counts of electrons as functions of electron kinetic energies is
called the electron spectroscopy. An application of the electron spectroscopy to photoelectrons
ejected from sample substances by photoelectric effects is the photoelectron spectroscopy.

Fig.5.25 shows an example of an X-ray photoelectron spectrum (XPS) for a H2O molecule
measured with a photon source of the characteristic X-ray of Mg (Kα line: 1253.6 eV). In this
spectrum, there are clearly resolved five peaks corresponding to molecular orbitals. One of them
is a group of the slowest photoelectrons, which can be assigned to a molecular orbital mainly
composed of oxygen 1s orbital. The formula of eq.(5.54) gives a transformation of the kinetic
energy to the ionization energy, and thus we obtain I(O1s) = 539.9 eV. Other photoelectrons
have much larger energies with higher velocities, and they are slightly smaller than the photon
energy 1253.6 eV of the X-ray source, since the ionization energies of the corresponding valence
orbitals are much smaller than the ionization energy of the inner shell O1s level. Among the
valence photoelectrons, the slowest ones give a peak of a molecular orbital mainly composed of
O2s orbital, and the corresponding ionization energy is determined as I(O2s) = 32.2 eV. Further,
peaks with ionization energies of 18.5 eV, 14.7 eV, 12.6 eV can be assigned as the following
molecular orbitals of the H2O molecule.

18.5 eV OH bonding molecular orbital containing O2py atomic orbital.

14.7 eV HH bonding molecular orbital containing O2pz atomic orbital.

12.6 eV Nonbonding molecular orbital containing O2px atomic orbital.

Based on the above correspondence, we can confirm that ten electrons in a water molecule are
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Figure 5.25: X-ray photoelectron spectrum (XPS) of the H2O molecule measured with the Mg
Kα line

accommodated in the five molecular orbitals; in each orbital two electrons are contained as an
electron-pair.

Table 5.5 lists a comparison of ionization energies I from an X-ray photoelectron spectrum
with calculated orbital energies ε by an ab initio molecular orbital method. Although exact
agreement could not be obtained, absolute values of the orbital energies agree well with the
observed ionization energies within the error of 10%.

Table 5.5: Ionization energies I by XPS and orbital energies ε by an ab initio molecular orbital
method for H2O

Peak number I(eV) ε(eV) Molecular orbital character Main atomic orbital component
1 539.9 −558.3 Inner shell O1s
2 32.2 −36.8 Bonding O2s
3 18.5 −19.3 OH Bonding O2py
4 14.7 −15.2 HH bonding O2pz
5 12.6 −13.6 Nonbonding O2px

5.8.2 Photoelectron spectrum of the hydrogen molecule and the binding
energies

A photoelectron spectrum measured with the ultraviolet photons is called ultraviolet photoelec-
tron spectrum (UPS). For measurements of UPS, photons of 21.22 eV irradiated from a helium
discharge, which are due to 21P→ 11S transitions (from 2p orbital to 1s orbital), are used in
many cases. Since ultraviolet (UV) photons have much smaller energies in comparison with X-ray
photons, UV photons are not enough to ionize inner-shell electrons. However, electron kinetic en-
ergies are so small that more fine structures can be resolved in UPS. When a molecular vibration is
excited upon ionization, the kinetic energy of the photoelectron becomes smaller by an amount of
the energy required for the vibrational excitation, since this energy is further consumed from the
photon energy. In highly resolved photoelectron spectra, vibrational fine structures often appear
as many peaks. In Fig.5.26 a photoelectron spectrum of the hydrogen molecule is shown as an
example.

Peaks labeled by 0, 1, 2, · · · in the figure indicate the vibrational quantum v of the vibrational
states of produced ion H2

+. v = 0 corresponds to the vibrational ground state of H2
+, which is

the state of zero-point vibration of the hydrogen molecule-ion. Fig.5.26 shows the most strong
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Figure 5.26: Ultraviolet photoelectron spectrum of the H2 molecule

peak for v = 2. This is related to Franck-Condon principle, which is a well known rule for
electronic transitions in molecules. According to Franck-Condon principle, electronic transitions
can be considered to occur without nuclear motion. It follows that for potential energy curves
as in Fig.5.27 only vertical transitions are acceptable. In real cases, vertical transitions are most
likely to occur, and slightly displaced transitions can also appear though the probabilities are
small. Transitions requiring large nuclear displacements hardly occur.

Since the bonding force becomes weaker in the hydrogen molecule-ion, the equilibrium nuclear
distance is expected to become longer in the ion than the hydrogen molecule. The most outstand-
ing peak of v = 2 in the photoelectron spectrum in Fig.5.26 indicates that just on the vertical
line from the equilibrium position of H2 the potential curve of the ion crosses with the vibrational
level of v = 2. The ionization energy corresponding to the vertical transition is called the verti-
cal ionization energy in general. In the case of ionization of the hydrogen molecule, the vertical
ionization energy can be determined as 15.96 eV from Fig.5.26. The minimum ionization energy
of the hydrogen molecule on the other hand correspond to an ionization transition to the level of
v = 0 in the ion. Such a minimum ionization energy without vibrational excitation is called the
adiabatic ionization energy, which is estimated to be 15.43 eV in the case of H2.

What does the limit of v → ∞ in the vibrational excitation means? This corresponds to a
dissociated state where the bond is completely broken. In the photoelectron spectrum in Fig.5.26
this limit of v → ∞ corresponds to a dissociation of H2

+ into a H atom and a H+ ion. Thus, if
the position of v →∞ in the spectrum can be deduced, the dissociation energy of H2

+, D0(H2
+)

can be obtained from I(∞) − I(0). Noting that intervals between the peaks in the spectrum
decrease with the increase of v, a graphical plot of the intervals as functions of v gives a position
where the interval becomes vanishing. From this procedure we can obtain the right position
of the dissociation limit. The result becomes I(∞) = 18.08 eV. From this value, we obtain
D0(H2

+) = I(∞) − I(0) = 18.08 − 15.43 = 2.65 eV (see Table 5.3). Further, a correction of the
zero point energy leads to determination of the binding energy De (in the case of H2, it is the
bond energy). A careful study of peak intervals shows that the intervals almost linearly decrease.
From this line we can obtain the vibrational interval at v = 0, and one half of this can be a good
estimate of the zero-point energy. Thus we obtain

De(H2
+) = D0(H2

+) + 0.14 = 2.79 eV

From the spectrum in the figure, the vibrational energy quantum of H2
+ can be estimated

as about 0.28 eV. This corresponds to a wave number of ca. 2260 cm−1, which is considerably
smaller than the wavenumber of 4401 cm−1 for the molecular vibration in H2. This is because
in the ion a loss of a bonding electron decreases the bonding force. In general, a loss of bonding
electrons causing a reduction of the bonding force, which results in a reduction of the vibrational
wavenumber. When a loss of antibonding electrons oppositely causes a relative increase of the
bonding force to result in an increase of the vibrational wavenumber.
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Figure 5.27: Potential energy curves for H2 and H2
+

Example 5.5 From the photoelectrons spectrum of Fig.5.26 and the ionization energy of the
hydrogen atom (13.60 eV), obtain the dissociation energy of the hydrogen molecule.

(Solution) Let us denote the dissociation energy of the hydrogen molecue as D0(H2), the ionization
energy of the hydrogen atom as IH, an energy requied for ionization of the hydrogen molecule and
dissociation of H2

+ ion at the same time as I(∞). Then, we obtain the following relation.

D0(H2) + IH = I(∞)

Both sides of this equation correspond to the energy required to produce a disociated state of
the hydrogen molecule ion (a state dissociated into H and H+) starting from the vibrational
ground state (the zero-point vibrational state) of the hydrogen molecule. The left side is a path of
dissociation of a hydrogen molecule in the first step followed by ionization of one of two hydrogen
atoms in the second. The right side is another path of a direct transition into the dissociated ionic
state. The latter can be estimated from Fig.5.26 as

I(∞) = 18.08 eV

Then, using IH = 13.60 eV, we obtain

D0(H2) = I(∞)− IH = 18.08− 13.60 = 4.48 eV (see Table 5.3)
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Exercises

5.1 The secular equation of π orbitals for allyl CH2CHCH2 in the simple Hückel method is
given by ∣∣∣∣∣∣

α− ε β 0
β α− ε β
0 β α− ε

∣∣∣∣∣∣
= 0

Solve this equation, and obtain π orbital functions and their energy levels for allyl.

5.2 Obtain the bond-order P of N2
+, and compare the dissociation energy D0 and the bond-

length R of N2
+ with those of O2 and N2.

5.3 Explain qualitatively molecular orbitals and their energy levels of the HCl molecule using
the principle of orbital interactions.

5.4 Explain qualitatively molecular orbitals and their energy levels of the N2 molecule based on
the principle of orbital interactions and the Example 5.1 for the two to one orbital interactions.

5.5 Explain the molecular structure of propene CH3CH = CH2 using hybrid orbitals.
5.6 Explain the molecular structure of the TeCl4 molecule as shown in the following figure.

5.7 Using atomic orbitals (χj), 1s for the H atom，1s, 2s, 2px, 2py, 2pz for a F atom, molecular
orbitals(φi =

∑
j Cjiχj)of the HF molecule were calculated and listed in Table 5.6. The uppermost

row shows orbitals energies (εi eV) for molecular orbitals φi(i = 1, · · · , 6). In the lower rows,
coefficients Cji for atomic orbitals χj are listed. Phases (signs) for χj were chosen as follows;
phases of s orbitals were chosen to be positive at longer distances, and phases for p orbitals were
chosen to be positive at the positive direction on the respective coordinate axis commonly defined
for all atoms. Carefully study this table, and answer the following questions.

(1) Classify φ1 − φ6 into σ orbitals and π orbitals.
(2) Which one among χ1 − χ6 is F1s orbital?
(3) Which one among χ1 − χ6 is H1s orbital?
(4) Which is(are) vacant orbital(s) among φ1 − φ6?
(5) Which orbital(s) among φ1 − φ6 is(are) most responsible for the bonding force between the

H and F atoms.

Table 5.6:

φi φ1 φ2 φ3 φ4 φ5 φ6

εi(eV) −704.8 −40.03 −15.92 −12.63 −12.63 −17.12
χ1 C1i 0.995 −0.249 0.083 0 0 0.085
χ2 C2i 0.023 0.936 −0.435 0 0 −0.560
χ3 C3i 0 0 0 1 0 0
χ4 C4i 0 0 0 0 1 0
χ5 C5i −0.003 −0.090 −0.702 0 0 0.825
χ6 C6i −0.006 0.158 0.521 0 0 1.090
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5.8 Molecular orbitals (MO) of C2H4 were calculated as linear combinations of atomic orbitals
(AO), 1s for the H atom and 1s, 2s, 2px, 2py, 2pz for the C atom, and Table 5.7 lists the results
for nine MO from the lowest in energy. The uppermost row includes orbital energies of molecular
orbitals in the unit of eV. The lower rows list coefficients for AO (1 ∼ 14). As AO, Slater type
orbitals (STO) called STO3G were used in the calculations. Phases for s orbitals were chosen to be
positive in the longer distances, and phases for p orbitals were chosen to be positive at the positive
direction on the respective coordinate axis. Table 5.8 lists employed Cartesian coordinates for six
atoms in the unit of Å. Carefully study these results, answer the following questions. Note that
only one answer is not assumed, and find all possible answers.

(1) Which are hydrogen atomic orbitals among 1 ∼ 14 in Table 5.7 ?
(2) Which is carbon 2s atomic orbital among 1 ∼ 14 in Table 5.7 ?
(3) Which is the lowest unoccupied molecular orbitals (LUMO) among MO (1) ∼ (9) in Table

5.7 ?
(4) Which MO contribute to formation of the CCπ bond among MO (1) ∼ (9) in Table 5.7 ?
(5) Which MO contribute to formation of the CHσ bond among MO (1) ∼ (9) in Table 5.7 ?
(6) Which AO is 2px orbital for (1) atom in Table 5.8 ?
(6) Which AO is 1s orbital for (5) atom in Table 5.8 ?

Table 5.7:

エネルギー （1） （2） （3） （4） （5） （6） （7） （8） （9）
（eV） −299.9 −299.8 −26.6 −20.2 −16.4 −14.4 −12.6 −8.8 8.6

1 0.702 0.701 −0.178 −0.137 0.000 0.015 0.000 0.000 0.000
2 0.702 −0.701 −0.178 0.137 0.000 0.015 0.000 0.000 0.000
3 0.020 0.031 0.471 0.416 0.000 −0.026 0.000 0.000 0.000
4 0.020 −0.031 0.471 −0.416 0.000 −0.026 0.000 0.000 0.000
5 0.002 −0.004 −0.112 0.198 0.000 0.502 0.000 0.000 0.000
6 −0.002 −0.004 0.112 0.198 0.000 −0.502 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 −0.394 0.000 0.392 0.000 0.000
8 0.000 0.000 0.000 0.000 −0.394 0.000 −0.392 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.636 0.810

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.636 −0.810
11 −0.005 0.005 0.115 −0.224 −0.260 0.217 −0.348 0.000 0.000
12 −0.005 0.005 0.115 −0.224 0.260 0.217 0.348 0.000 0.000
13 −0.005 −0.005 0.115 0.224 −0.260 0.217 0.348 0.000 0.000
14 −0.005 −0.005 0.115 0.224 0.260 0.217 −0.348 0.000 0.000

Table 5.8:

X Y Z
（1） 1.338 0.0 0.0
（2） 0.0 0.0 0.0
（3） −0.564 0.929 0.0
（4） −0.564 −0.929 0.0
（5） 1.902 0.929 0.0
（6） 1.902 −0.929 0.0
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5.9 Next figures show electron density contour maps for molecular orbitals in H2O and H2S
molecules, which are most responsible for production of OH and SH bonds, respectively. Deduce
relative magnitude of ionization energies of three atoms, S, O, and H based on these figures.

5.10 A figure below shows an observed photoelectron spectrum of the nitrogen molecule N2

using ultraviolet photons of hν = 21.218 eV emitted from a helium discharge. Peaks of (1)-(3)
are associated with vibrational structures due to excitation of molecular vibrations of N2

+ ion. A
comparison of observed vibrational frequencies (wavenumbers) for ionic states with those for N2

(2345 cm−1) leads to the following conclusions; (1) is a weakly bonding orbital, (2) is a strongly
bonding orbital, and (3) is a weakly antibonding orbital. Assign the observed bands of (1)-(3) to
molecular orbitals 1πu, 3σg, 2σu, whose electron density maps are shown in Fig.4.5. Deduce the
order of bondlengths of N2

+ in the ionic states corresponding to (1)-(3) by comparing with the
bondlength for N2.



Chapter 6

Molecular orbital and chemical
reaction

Chemical reactions are phenomena in which systems of nuclei and electrons undergo changes of
geometrical configurations and compositions. As we have studied, binding or antibinding forces
are caused by electrons. In this chapter, we will study basic quantum chemical principles of
chemical reactions based on functions of electrons.

6.1 Orbital theory of reactivity

In Chapter 5 we studied composition of new molecular orbitals and energy levels based on
orbital interactions. However, whether really new bonds are formed or not depends on electron
configurations. In this section, let us first study relationships between electron configurations and
reactivity as well as relationships between unpaired electrons and reactivity, and then we will
study the HOMO-LUMO principle and the frontier orbital theory.

6.1.1 Electron occupation number and reactivity

Occupation numbers of electrons in one energy level are limited to be either of 2, 1, 0 according
to the Pauli exclusion principle, and they are classified into three cases listed in Table 6.1.

Table 6.1: Classification of electron energy levels

Orbital interactions can also be classified into six patterns shown in Table 6.2. Pattern(1) is an
interaction between vacant orbitals with no electrons leading to an occupation number of zero,
which results in no bond formation. An example is interactions between 2s vacant orbitals of a
pair of He atoms. Pattern(2) is an interaction between a vacant orbital and an unpaired electron,
and in this case an electron in the bonding orbital yields one-electron bond with a bond-order of
1/2. A real example of this type is a production of H2

+ ion from H and H+ already studied in
Chapter 5. The next Pattern(3) is an interaction between two unpaired electrons, which gives an
electron-pair (covalent) bond with a bond-order of unity, as can be seen from a typical example of
H + H→ H2. An electron-pair bond can also be produced via Pattern(4), an interaction between
a vacant orbital and an electron-pair, and an example is H+ + H− → H2; it is of note that H−

can exist, since the electron affinity of the H atom is positive.

144
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Table 6.2: Fundermental patterns of orbital interactons and bond-order

Pattern(5) involving an interaction between an unpaired electron and an electron-pair gives an
electron in the untibonding orbital in addition to two electrons in the bonding orbital, and thus
the bond-order becomes (2−1)/2 = 1/2 equivalent to the one-electron bond. A typical example of
this sort is He+ + He→He2

+. As shown in Table 5.3, the dissociation energy and the bond length
of He2

+ are very similar to those of H2
+, because the bond-orders are 1/2 in both cases. The last

Pattern(6) includes interactions between electron-pairs, and in this case the bonding character of
the bonding electron-pair cancells out with the antibonding character of the electron-pair in the
antibonding orbital to result in no bond formation. Interactions between 1s electron-pairs in two
He atoms belong to this type. The reason for no production of a He2 molecule can be given by
Patterns (1) and (6) in Table 6.2.

In the above arguments, we assumed that two orbitals effectively interact with each other. In
real problems, we should consider whether the orbital interactions are effective or not, especially
the conditions concerning with the principles of the energy difference and the overlaps between
the interacting orbitals.

A careful analysis of electron occupation numbers and bond-orders for the six patterns in Table
6.2 leads to a conclusion that reactivity is governed by combinations of electron ocupation numbers,
as summarized as follows.

(1) No reaction occurs between vacant orbitals or between electron-pairs. [ Pattern (1) (6) ]
(2) Unpaired electrons can react with any types. [ Pattern (2) (3) (5) ]
(3) A vacant orbital and an electron-pair can react. [ Pattern (4) ]

Atoms and moelcules with unpaired electrons are called redicals. When radicals meet with other
species, they usually react promptly to yield other species. Therefore, radicals are chemically
unstable. Radicals are often produced by dissociation of smoe cahmical bonds in stable chemical
compounds. The chemial stability of compounds is thus not to react easily and to keep themselves
unchanged longtime, even if they meet with other species. The stability of molecules by themselves
is the physical stability, which is different from the chemcial stability. Under special conditions,
where probabilities making contact with other species are supressed to be very low, as under
high vacuum or at very low temperature, radicals can survive as they are. When the level of
the unpaired electron has a very large energy separation or a negligibly small overlap with other
orbitals, radicals do not interact with others to be able to exist with a good chemical stability.

Reactions by Pattern(3) and Pattern(4) will stop in most cases because of no unpaired electrons
in the products. On the other hand, products of Pattern(2) or Pattern(5) also have unparied
electrons, and further reactions wiil occur in many cases. Through such mecanisms, radicals
produced by thermal decomposition, photolyses, or radiolyses of molecules often arouse chain
reactions or even explosion.

One-electron bonds by Pattern(2) or Pattern(5) have the lower physical stability because of the
lower bondo-order than electron-pair bonds by Pattern(3) or Pattern(4). One-electron bonds are
chemically unstable because of the unpaired electron. In usual textbooks for the introductory
chemistry, chemically stable bonds are considered to be formed by a bond of an electron-pair. In
this sense, the important stability is the chemical stability. Even if the system is physically very
stable, it is not necessarily chemicaly stable. No unparied electron can be considered as a necessity
condition for the chemical stability except for some special cases. However, no unpaired electron
does not necessarily mean the chemical stability, since Pattern(4) give reaction possibilites without
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unpaired electrons. Systematic considerations of conditions governing the chemical stability will
be made afterward.

Here, we should note the physical stability in more detail. The physical stability becomes larger,
when the dissociation energy( (bond energy) - (zero-point energy) ) becomes larger. Qualitatively,
the higher the bond-order, the higher the physical stability. If the bond energy is too small, the
system becomes getting out of the potential well by the zero-point vibration. This means that
even if the bond energy is positive, the bond may be physically unstable unless the bond energy
is larger than the zero-point energy. Furthermore, the bond may become unstable, when the
thermal energy is larger than the bond energy. The thermal energy depends on the absolute
temperature T , and it is approximately an order of kT , where k is the Boltzmann constant.
Themal decompositiom may occur, when a thermal energy getting into the system is large enough
to dissociate a bond. It follows that a bond with a high bond energy is thermally stable. In
addition, the higher the bond energy brcomes, the lower the probability that undergoes exchange
of chemical bonds becomes. In a thermal equilibrium, the lower energy has the higher possibility;
the probability for a state of an energy E is proportional to e−E/kT . Thus, the larger bond energy
means that the state is more stable and that the probability changing into other higher energy
state is less probable.

In Pattern(4) for interactions between a vacant orbital and an electron-pair, a vacant orbital
is coordinated with an elctron-pair, and the electron-pair is donated to the vacant orbital. This
mecahnism corresponds to interactions of vacant orbitals of H+,Zn2+,BF3 with unshared-electron-
pairs of NH3,H2O,CN− leading to comlex formation by coordinate bonds or dative bonds. This
pattern of bond formation is associated with an electron distribution transfer from an electron-
pair to a vacant orbital. A phnomenon accomanied with an electron distribution transfer due
to orbital interactions is called the cahrge transfer, and compounds or complexes formed by the
charge transfer are called the charge-transfer compounds or the charge-transfer complexes. In
charge transfer, a substance giving an electron is called the electron donor, and a substance
receiving an electron is called the electron acceptor. The bond formation via interactions between
a vacant orbital and an electron-pair, an electron reception of a vacant orbital as well as an electron
donation of an electron-pair are associated. Key factors governing the formation of new chemcial
bonds via this Pattern(4) are very important and will be studied in more detail in the last part
of this section.

6.1.2 Number of unpaired electrons and the valency

The number of unpaired electrons and the number of stable bonds to be produced are closely
related, because unparied electrons can be paired to produce an electron-pair bond via Pattern(3)
in Table 6.2. This is also related with the number of valnce electrons and the valence. Table 6.3 lists
the number of the outermost electron shell, the number of valence elecrons, the number of unpaired
electrons, and the ususal valency for atoms with atomic numbers smaller than 11. The number of
unpaired electrons may change depending on electron configurations of the atoms. When we only

Table 6.3: The number of unpaired electrons and valency
Atom Number of electrons Number of unpaired electrons Usual

Outermost Valence electron Ground electron Valence state Valency
electron shell configuration

H 1 1 1 1 1
He 2 0 0 0 0
Li 1 1 1 1 1
Be 2 2 0 2 2
B 3 3 1 3 3
C 4 4 2 4 4
N 5 5 3 3 3
O 6 6 2 2 2
F 7 7 1 1 1
Ne 8 0 0 0 0
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Figure 6.1: Valence states of the C atom and promotion

consider the ground electronic configuration, some discrepancies from the conventionally used will
be found for C and Be atoms. This problem will be solved by considering valence states introduced
below.

In the case of the C atom, the electron configuration is (1s)2(2s)2(2p)2, and the C atom has only
two unpaired electrons as shown in Fig.6.1(a). If an electron is excited to an electron configuration
(b) in Fig.6.1, then we have four unpaired electrons, which agree well with the usual valency of
four. Similarly electron configurations using hybridization as shown in Fig.6.1(c)-(e) give four
unpaired electrons in agreement with the usual valency. These electron configurations giving the
usual valency are called the valence states. Therefore, in order to obtain the usual valency, valence
states with a higher energy need to be made. Such a process is called the promotion, and energies
required are called the promotion energies. Promotion energies for the above (b)-(e) are the same,
since they are just to promote a 2s electron up to a 2p level. If the stabilization energy gained
by the bond formation is larger than the promotion energy, the reaction via the valence state
with promotion becomes possible energetically. Be, B, and C atoms really show usual valency
via valence states, because of sufficiently large bond energies much greater than the promotion
energies.

6.1.3 The HOMO–LUMO principle and the frontier orbital theory

Let us study reactions without unpaired electrons of Pattern(4) in Table 6.2. This type of
interactions between a vacant orbital and an electron-pair need conditions with a sufficiently
small energy separation as well as an enough overlap between the orbitals. In the ground electron
configuration without electron pairs, electron-pairs occupy lower levels up to the HOMO, and
upper levels from the LUMO are vacant as can be seen in Fig.6.2. Thus, the required condition
with a sufficiently small energy separation leads to the following important conclusions.
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Figure 6.2: HOMO-LUMO interactions and the charge transfer

[The HOMO–LUMO principle]

Interactions between a vacant orbital and an electron-pair occur most effectively be-
tween a HOMO of one species and a LUMO of the other.

This is denoted as the HOMO–LUMO principle, and an interaction between a HOMO and a
LUMO is called a HOMO-LUMO interaction.

A comparison of HOMO–LUMO interactions among various compounds indicates that the
higher MOMO and the lower LUMO give the smaller energy separation to become the better
combination of an electron acceptor and an electron donor for the charge transfer or the electron
transfer. This propensity can be summarized as follows.

[The principle of charge transfer interactions]

(1) The electron donation to the other species most easily occurs at the HOMO.

(2) The electron reception from the other species most easily occurs at the LUMO.

(3) The higher HOMO (the smaller ionization energy) gives the stronger ability of the electron
donation to the other species.

(4) The lower LUMO (the larger electron affinity) gives the stronger ability of the electron
reception from the other species.

(5) The higher LUMO and the lower HOMO result in the lower ability of electron donation and
reception.

The occupation number of electrons in an unpaired electron orbital is unity, which is one
half of the maximum occupation of electrons, and thus this type of orbitals is denoted as the
singly-occupied molecular orbital (SOMO). The special reactivity of the unpaired electron orbital
(SOMO) with arbitrary types of electron configurations in addition to the HOMO–LUMO principle
and the principle of charge transfer interactions indicate that key roles in chemical reactions are
played by HOMO, LUMO, and SOMO. These three types of orbitals are called the frontier orbitals,
and the theory noting the roles of these orbitals is the frontier orbital theory proposed by Kenichi
Fukui in 1951, who have developed quantum chemical theories of chemical reactions together with
R. Hoffmann.
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6.2 The chemical stability and the reactivity of rare gases

In this section, conditions for the chemical reactivity are summarized, and the reactivity of rare
gases are discussed.

6.2.1 Conditions for the chemical stability

The chemical stability is not to change into other substances easily. This requires the physical
stability, since the system should keep itself when it exits alone. In addition, the following four
conditions for the chemical stability are important in order to keep itself even if it encounters with
other species.

[Conditions for the chemical stability]

(1) No unpaired electrons

(2) HOMO is very low. (Almost no ability for the electron donation, because of the too large
ionization energy)

(3) LUMO is very high. (No ability for the electron reception, because of the negative electron
affinity)

(4) Spatial regions where HOMO and LUMO extend are not accessible by orbitals of other
species.

If the above three conditions (1)–(3) hold, no reactions occur with other species having no
unpaired electrons. The condition (4) can be satisfied when the system is placed under vacuum
or in a solid matrix at low temperature (this technique is called the matrix isolation). This
condition (4) can be fulfilled approximately, if the regions where HOMO and LUMO extend are
protected physically from other species by a large functional group (such a technique is called the
steric protection). Under the condition (4), reactions are suppressed even if the other species are
radicals with unpaired electrons. When the condition (4) is not satisfied, an encounter with a
radical having a large extension of SOMO may lead to reactions, even if the conditions (1)–(3)
are satisfied.

In order to be chemically stable, the system needs also to be physically stable. Thus the system
should be in the lowest electronic energy state (the ground electronic state). Further, except for
monoatomic systems the bonding energy should be larger than the thermal energy. It is rather
easy to maintain these physical conditions; we should only be careful not to introduce energetic
actions by heat and light. When light is absorbed to give an electronic excitation to an excited
state, the physical condition becomes unsatisfied, and simultaneously chemical conditions (1)–(3)
also become unsatisfied.

In order to keep substances unchanged long time, those unstable thermally or photochemically
should be saved under cold and dark places. Those reactive with water or oxygen should be kept
in a nitrogen atmosphere or under a vacuum state. Special cares appropriate for each substance
should be made considering the above conditions.

6.2.2 The reactivity of rare gases

Rare gas atoms in the ground state satisfy conditions (1)–(3) for the chemcal stability ((1) No
unpaired electrons, (2) the ionization energy is too large, and (3) the electron affinity is negative),
and thus their reactivity is very low. However, some reactions can occur if the conditions become
partly unsatisfied. Although ionization energies of rare gas atom are large, their values decrease
as He(24.6 eV), Ne(21.6 eV), Ar(15.8 eV), Kr(14.0 eV) in this order, and the ionization energy
of Xe becomes 12.1 eV, which is smaller than the ionization energy of the hydrogen atom (13.6
eV). This indicates that the condtion (2) does not hold for Xe. Noting this propensity, N. Bartlet
synthesized XePtF6 from Xe and PtF6 in 1962, and also N. H. Classen et al. obtained XeF4 via
thermal reactions of Xe and F2 in 1962. Further, XeF2, XeF6, XeO3, XeO4 and some other rare gas
compounds have been synthesized, and it follows that a hypothesis of (rare gases)=(nonreactive
gases) has been rejected.

Ions and excited atoms (He*, Ne*, Ar*, Kr*, Xe:) of rare gases do not satisfy the conditions
(1)–(3) for the chemcial stability, and it follows that the following reactons can occur.
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(a) He+ + He −→ He2
+, He+ + H −→ (HeH)+, He+ + N2 −→ He + N2

+

(b) Ar∗ + F −→ (ArF)∗, Kr∗ + F −→ (KrF)∗, Xe∗ + Cl −→ (XeCl)∗

(c) He∗ + Ar −→ He + Ar+ + e−, Ar∗ + H2O −→ Ar + H2O+ + e− In the reactions of (a),
He+ behaves as a very strong electron acceptor. Reaction products in (b) are called the excimers
(the excited dimers), which are used for the laser oscilation. Reactions in (c) are ionization reac-
tions associated with a collision between an excited atom and a molecule and called the Penning
ionization.

6.3 Cyclic addition reactions and the exchange of chemical
bonds

In this section, cyclic addition reactions will be studied as an example of chemical bond exchange
mechanisms for reactions between species having no unparied electrons.

6.3.1 The Diels-Alder reaction

Addition of a compound having a CC unsaturated bond such as ethylene and acrolein to a diene
such as butadiene yields a cyclic skeleton composed of six carbon atoms. This type of reaction
is called the Diels-Alder reaction. A typical example is a reaction of butadiene and ethylene
producing cyclohesene as shown in the next chart (a), which is easily occur.

On the other hand, another addition reaction (b) involving two ethylene molecules does not
proceed without heating or irradiation of light. In order to elucidate the mechanism of the addition
reaction (a), let us first study molecular orbitals and energy levels for ethylene and butadiene.

Molecular orbitals and energy levels for ethylene C2H4

As studied in section 5.6 and in Example 5.3, the moelcular skeleton of ethylen is on a plane,
and the bond angles are about 120◦. HOMO and LUMO of ethylene are a bonding π orbital
πb and an antibonding orbital πa composed of the π type overlap of p orbitals vertical to the
molecular plane as can be seen from Fig.6.3 and Example 6.1. In order to consider the mechanism
of the Diels-Alder reaction, properties of these HOMO and LUMO are important.

Example 6.1 Compose molecular orbitals and their energy levels from two units of CH2 (an
application of the AH2 molecule in Section 5.4).

(Solution) Place two units of bent CH2 with a common central axis bisecting both units, and then
get closer to each other (Fig. 6.4).

The lowest energy orbitals of each C2H2 unit is 1σ orbital almost purely composed of a C1s
orbital, and an interaction of a couple of 1σ orbitals yields a σ orbital (1) due to their same phase
mixture and another σ orbital (2) due to the opposite phase mixture. The energy levels become



CHAPTER 6. MOLECULAR ORBITAL AND CHEMICAL REACTION 151

(1)<(2). This difference is small, because the overlap between C1s orbitals is very small due to
very tight electron distributions around the nuclei in the inner shell orbitals, though the energy
difference is zero.

Figure 6.3: HOMO and LUMO of ethylene C2H4

Next, let us consider an interaction between 2s orbitals mainly composed of C2s. This interaction
yields a C2sCC bonding σ orbital (3) due to the same phase mixture and a C2sCC antibonding
σ orbital (4) due to the opposite phase mixture, and the levels become (3)<(4). In this case, the
energy difference between (3) and (4) is significantly large because of a large overlap.

A paralell coupling of 3σ orbitals with strong CH bonding characters leads to an orbital (5)
with a π bonding character together with an orbital (7) with an atibonding type, and the level
ordering becomes (5)<(7).

Here, it should be noted that a same phase interaction at the CC bond region between 4σ
orbitals with HH bonding characters yields a level of (6), which intervenes between the levels of
(5) and (7). The interaction between 4σ is very strong because of the hybridization of 2s and
2p orbitals on the C atoms. It follows that an antibonding orbital produced by this interaction
becomes the higher energy level than the forthcoming two π orbitals (8) and (9).

Since 1π orbital is composed of a p orbital vertical to the CH2 plane, a bonding π orbital (8)
and an antibonding π (9) are produced simply by π type interactions between the p orbitals.

A C2H4 molecule has 16 electtrons, and two electrons are accomodated in each orbital from
(1)∼(8). Thus, the bonding π orbital (8) is HOMO, and the antibonding π orbital is LUMO.

Molecular orbitals and energy levels for butadiene C4H6

A butadiene molecule can be constructed by an electron-pair bond between two radicals having
an unpaired electron in each unit, which is produced from ethylen by taking away one H atom
from a CH bond. The new CC bond thus produced has a double bond character a little by
a reason mentioned below, and it follows that a butadiene molecule has a planar structure in
which 10 atoms are placed on the molecular plane. Therfore, butadiene has two isomers, cis and
trans forms (Fig. 6.5). Among them, the trans form is more stable. The Diels-Alder reaction of
butadiene proceeds in the cis form, since this form is suitable to the reaction mechanism discussed
below.

Example 6.2 Construct π orbitals and their energy levels of butadiene from p orbitals of four
C atoms, starting from two sets of π orbitals of the ethylene type (Fig. 6.6).

(Solution) Let us suppose that π orbitals of butadiene are produced by an π type interaction of a
pair of p orbitals at one end of each ethylene unit.

Based on the discussion for constructing A2 type molecules in Section 5.5, let us consider
interactions between bonding πb orbitals and those between antibonding πa orbitals. In-phase
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Figure 6.4: Moelcular orbitals of ethylene

interactions between πb orbitals yield an orbital (1) which is entirely bonding for three CC bonds
and expressed as bbb and another orbital (2) having antibonding character in the middle which
is expressed as bab. The energy ordering of these orbitals becomes (1)<(2) as can be seen in Fig.
6.6(a). Similarly the same type interactions between πa orbitals yield an aba type orbital (3) and
an aaa type orbital (4). Thus, the energy level ordering becomes (1)<(2)<(3)<(4).

In the next step, let us consider interactions of a pair of orbitals, (1)(3) having a node and
(2)(4) having no nodes at the central CC bond. Then, we obtain new orbitals modified by mixing
effects shown in (b) of the figure. From the upward to the downward the bonding character is
relatively strengthened, and from the downward to the upward the bonding character is relatively
weakened.

The energy levels are numbered from the lowest as π1, π2, π3, π4, in which numbers of nodes
are smaller than the numbering by one. This propensity is the same as the number of nodes in
wave functions for a particle in a box. This similarity is due to the structure of the C-C-C-C
skeleton which is one dimesional space where an electron is accomodated. Noting this similarity,
characteristics of π orbitals in butadiene can also be deduced.

Since one electron is provided from a p orbital of each C atom, there are four π electrons in
butadienem, which occupy π1 and π2 orbitals as electron-pairs. Thus, π2 is HOMO, and π3 is
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Figure 6.5: trans and cis forms of butadiene

Figure 6.6: Molecular orbitals of butadiene

LUMO. At the central CC bond, the bonding contribution from π1 is larger than the antibonding
contribution from π2, and hence this bond has slightly a double bond character (the bond length
of the central CC bond in butadiene is 1.483 Å, which is a bit shorter than a pure single CC bond
of ethane (1.536 Å) and longer than the pure double bond of ethylene (1.338 Å)).

6.3.2 HOMO–LUMO interactions and the symmetry of orbitals

Based on the above orbitals of ethylene and butadiene, let us consider HOMO–LUMO inter-
actions of those orbitals. If ethylene and butadiene molecules are placed on the same plane, H
atoms avoid mutual overlaps of π orbitals to result in insufficient interactions. Thus, two molecules
should be placed on a pair of parallel planes, the upper and the lower, and we consider interactions
of two orbitals, one extending from the upper plane to downward and the other from the lower
plane to upward. In Fig. 6.7, ethylene is placed on the lower plane, and butadiene is placed on the
upper plane. In this situation, C atoms 1 and 4 can interact with C atoms 6 and 5, respectively.
When we place HOMO of ethylene and LUMO of butadiene to have in-phase couplings at the
positions 1 and 6 as in Fig.6.7(a), the opposite ends at 4 and 5 can also have overlaps in the same
phase. It follows that new bonds are simultaneously formed at 1∼6 and 5∼4.

Now, let us study effects of the above interactions in terms of changes in bonding characters
associated with the electron transfer. Electrons in the electron-pair of ethylene flow into butadiene,
and then bonding electrons around 5 and 6 go away to some extent to result in the decrease of
the bonding between 5 and 6. This effect reducing the bonding can be denoted as (–) as shown
in Fig. 6.8. As already mentioned, the electrons flow into the bonding regions of 1-6 and 4-5,
where bonds are missing before the reaction. Thus, such an increase of the bonding in these
regions can be denoted as (+). Also, the electrons flow into antibonding regions of 1-2 and 3-4 in
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Figure 6.7: HOMO–LUMO interactions of ethylene and butadiene

LUMO, and these regions have (–) effects on bonding. The electron flow into the bonding region
of 2-3 in LUMO gives a (+) effect. As summarized in the middle of Fig. 6.8, the above effects
are alternating on the perimeter of the hexagon as +–+–+– to lead to bond-order changes of ±1
producing a skeleton of cyclohexene as shown in the right part of Fig. 6.8.

Figure 6.8: Bond-order changes in the Diels-Alder reaction

By the way, we should consider interactions between LUMO of ethylene and HOMO of butadiene
as shown in Fig.6.7(b). Although this combination of orbital interactions has an opposite direction
of the electron flow, associated changes in bonding characters are the same as those in Fig.
6.8. It follows that these effects of HOMO–LUMO interactions between ethylene and butadiene
occur in a concerted way of bond-order changes to complete bond formation and destruction. It
should be noted in two types of HOMO–LUMO interactions that one includes interactions between
symmetric orbitals, and the other includes interactions between antisymmetric orbitals. Such a
reaction with good symmetry combinations is called the symmetry allowed reaction.

In the case of two ethylene molecules, the cyclic addition reaction cannot proceed in a con-
certed way, because the symmetry matching at one end is not compatible with another symmetry
matching at the other end, as can be seen in Fig. 6.9. Such a reaction without good symmetry
combinations is called the symmetry forbidden reaction.

Example 6.3 Predict the stereo chemical structure of dichlorocyclohexene produced by cyclic
addition reaction of cis-dichloroethylene and butadiene.

(Solution) Since Cl atoms of cis-dichloroethylene are on the same side of the plane of two C atoms
in ethylene during the reaction process, two Cl atoms are also on the same side in the product
cyclohexene ring with respect to C atoms 5 and 6 in Fig. 6.7, as can be seen in Fig. 6.10.
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Figure 6.9: HOMO–LUMO interactions between two ethylene molecules

Figure 6.10: The structure of dichlorocyclohexene

6.4 Selectivity and substitution effects in chemical reac-
tions

In view of obtaining chemical products utilizing chemical reactions, it is preferable to minimize
the useless loss of the strating materials. For this purpose, by-products should not be produced.
Production of by-products necessarily increases not only the useless loss of the starting materials
but also additional efforts to separate and purify them from the aimed products. From actual
needs for application, development of selective reactions as well as elucidation of their reaction
mechanisms have been aroused interests of many chemists. In this section, we will study some
selective reactions owing to introduction of functional groups.

6.4.1 Deformation effects of HOMO and LUMO by introduction of
functional groups

When an electron accepting functional group X such as the formyl group CHO is introduced
in ethylene, the vacant orbital of X interacts with πb and πa orbitals, and the shape of LUMO
will have a substantially increased distribution at an end distant from X. This mechanism can be
explained by interactions of πb and πa with X on the basis of the two to one orbital interactions
as shown in Fig. 6.11. In the new LUMO, the higher πa mixes with X in the same phase from
the upward, and in addition the lower πb slightly mixes with X in the opposite phase from the
downward. It follows that the electron wave at the nearest part from X is weakened in the opposite
phase, and that the electron wave at the distant part is strengthened in the same phase. Since
the LUMO level becomes lower, the substituted ethylene becomes a stronger electron acceptor.
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Figure 6.11: Deformation of LUMO by introduction of an electron accepting functional group X

When an electron donating functional group Y such as the methoxy group –OCH3 is introduced
in butadiene, the electron-pair of Y interacts with HOMO(π2) and LUMO(π3) of butadiene, and
the shape of HOMO will have a substantially increased distribution at an end distant from Y.
This mechanism can be explained by interactions of π2 and π3 with Y on the basis of the two
to one orbital interactions as shown in Fig. 6.12. In the new HOMO, the lower π2 mixes with
Y in the opposite phase, and in addition the higher π3 slightly mixes with Y in the same phase
from the upward. It follows that the electron wave at the nearest part from X is weakened in the
opposite phase from the downward, and that the electron wave at the distant part is strengthened
in the same phase. Since the HOMO level becomes higher, the substituted butadiene becomes a
stronger electron donor.

Figure 6.12: Deformation of HOMO by introduction of an electron donating functional group Y

As can be seen in the above examples, spatial extension of HOMO and LUMO can be modified
upon introduction of functional groups, which changes the extent of overlaps in orbital interactions
to result in variation of the reactivity. Whether accepting or donating power is aimed to be
emphasized can be chosen by selection of the functional group. These techniques can be applied
to selective control of reaction routes as can be seen in the following example.

6.4.2 Regioselectivity of reactions

Acrolein (A) is a compound produced by substitution of H in ethylene by the CHO group, and
1–methoxybutadiene (B) is a compound generated by substitution of H in one end of butadiene
by the OCH3 group. When (A) and (B) undergo addition reactions, a simple deduction neglecting
effects of the functional groups leads to tow possible products, an ortho-adduct (C) and a meta-
adduct (D) with the same probability. The substitution effects, however, emphasize the electron
accepting ability of (A) as well as the electron donating power of (B). This means that LUMO
in (A) and HOMO in (B) play dominant roles. It follows that only (C) is selectively synthesized
without formation of (D).
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Let us study the mechanism of the selective production of (C). As can be seen in Figs. 6.11
and 6.12, LUMO in (A) and HOMO in (B) have the substantial enlargement of orbital lobes at
the distant end from the functional groups. On the other hand, at the nearest part from the
functional groups the orbital lobes become smaller.

When orbital lobes for the most important parts of the orbital interactions are inequivalent
to have different spatial extension, let us denotes the inequalities a > b for one and a′ > b′ for
the other. Since the extent of an overlap depends on the overlap integral, we can estimate the
magnitude of the interaction from the summation of respective products of the overlapping parts.
Now let us compare pairs of the larger ones and smaller ones of (aa′ + bb′) with combinations of
different types, the larger with the smaller and the smaller with the larger, of (ab′ + a′b). The
magnitude of the overlaps for the former case is always larger than the latter. This can be seen
from the difference by the following equation.

(aa′ + bb′)− (ab′ + a′b) = (a− b)(a′ − b′) > 0

Since the larger the overlap becomes the stronger the orbital interaction becomes, combinations
of big ones together with those of small ones are selected in real chemical reactions. On account of
this mechanism, new chemical bonds are formed at both of the nearest parts from the functional
groups as well as at both of the distant ends. It follows that the ortho-adduct (C) in which the
functional groups are placed in the adjacent positions is selectively produced.

Exercises

6.1 A ground-state oxygen atom in the triplet state has two unpaired electrons, whereas an
oxygen atom in the singlet state has a vacant p orbital among the valence p orbitals. Such
a vacant orbital of an O atom can accept coordination of one of electron-pairs in a chloride
ion Cl− to yield a hypochlorous ion ClO−. Noting this reaction as well as the similarity of
electron configurations of S2−,P3−,Si4− with the Cl− ion, which have the same number of electrons
(isoelectronic configuration), explain structures of the following compounds.

(ClO4
−, SO4

2−,PO4
3−, SiO4

4−,XeO4)

6.2 Explain the reasons why rare gases are chemically inactive.
6.3 In 2-methoxybutadiene the electron donating ability of HOMO increases with the electron

donating effect of the methoxy(–OCH3) group, and in addition LUMO of the butadiene skeleton
slightly mixes with HOMO at the position 2. Considering these properties, predict the structure
of the main product of the addition reaction of 2-methoxybutadiene with acrolein.


