

Menton 2018.6.19 9:45-10:15

Global Reaction Route Mapping and Exploration of Novel Chemistry on Potential Energy Surfaces

Koichi Ohno^{1,2}

Tohoku University¹ Institute for Quantum Chemical Exploration²

Global Mapping of the World

We are here!

Ptolemaios's map

Discovery of New Routes 1492 Christpher Columbus 1498 Vasco da Gama 1497 Sebastien Gabbot

- 1499 Amerigo Vespucci
- 1519 Ferdinand Magellan

Exploration of New Worlds!

How to Explore the Chemical World?

Global Map? Tool for Exploration?

Basic Problems in Chemistry for a given Chemical Formula, such as C_NH_MO_L. (1) What kinds of chemical species (isomers) exist? (2) How are they converted each other? (3) How do they dissociate into smaller species? or How are they produced from smaller species?

To solve These Problems Theoretically, **Global Mapping** of Potential Energy Surfaces (PES) is needed.

•Minima:

- Equilibrium Structures (EQ)
- •Saddles:
- Transition Structures (TS)
- •Minimum Energy Paths:

Intrinsic Reaction Coordinates (IRC)

Reaction path search methods

1. Geometry optimization methods

- Eigen Vector Following: Cerjan and Miller (1981)
- Berny optimization: Shregel (1982)
- Geometry DIIS: Császár and Pulay (1983)
- Rational Function Optimization: Banerjee et al. (1985)
- 2. Double-ended methods
- Synchronous Transit: Halgren and

Targeted Methods

987)

- Nudged Elastic Band (NEB): Henkelman et al. (2000)
- String: Ren and Vanden-Eijnden (2202)
- Growing String: Peters et al. (2004)

- 3. Coordinate driving methods
- Single Coordinate driving
- Metadynamics: Laio and Parrinello (2002)
- First Marching: Burger and Ayers (2010)

- Global Reaction Route Mapping (Anharmonic Downward Distortion Following): Ohno and Maeda (2004)
- Artificial Force Induced Reaction: Maeda and Morokuma (2010)

Steepest Descent Method can be used from anywhere to find an EQ. If a TS is known, IRC can be followed.

Anharmonic Downward Distortion (ADD) Following: K.Ohno & S.Maeda, *Chem. Phys. Lett.*384,277(2004).

Uphill walks on PES enable us to perform Global Reaction Route Mapping (GRRM) !

Anharmonic Downward Distortion Following (ADDF) method Ohno, Maeda, *Chem. Phys. Lett.* 384, 277 (2004)

- Anharmonic Downward Distortion (ADD) indicates the direction of reaction! The problem becomes to find minima on the hypersphere, using frequency-scaled normal coordinates. $V=(1/2)\Sigma\lambda_iQ_i^2=(1/2)\Sigma q_i^2$: $q_i = \lambda_i^{1/2}Q_i$
- Can find all the EQ and TS automatically
- Full-ADDF of GRRM is in general *expensive*, like a *full-CI*. Limited-ADDF reduces computational costs drastically.
 Options for GRRM/ADDF: Large ADDF method (LADD)
 Double-ended Method (2P-SHS, d-ADDF)

Micro-iteration Method (**µ-ADDF**)

Ohno, Maeda, J.Phys.Chem. A, 110, 8933 (2006)

Parallel GRRM saves computation time considerably

in Single GRRM

ADDF is applied to one EQ at one time

With using many cpu/multicores ADDF can be applied to Many EQs at the same time

List of Global Search by GRRM/*full*-ADDF for the ground singlet-state at the B3LYP/6-31G* level with a 16-core computer

Atom	Formula	EQ	TS (cpu time /hour	6	H4CO	2	14	16.9	7	H2C2O3	179	1077	647
3	H2O	1	1	0.3	6	H4NCI	5	24	18.6	7	H3C3N	70	452	792
3	HCN	2	1	0.7	6	H3C2CI	8	36	26.2	7	H3N3O	93	384	937.9
4	H3N	1	1	2.8	6	C2O4	18	79	26.6	7	H2C3O2	207	1158	1499.8
4	H2O2	2	2	3.1	6	H3N3	9	49	42.7	8	H6BN	2	8	29.3
4	H2CO	4	12	5.1	6	H2C2Cl2	18	69	44.8	8	H6C2	2	8	47.6
4	H2N2	3	7	5.5	6	H3C2N	19	73	57	8	H6B2	2	5	69.2
4	H2C2	2	2	5.9	6	HC2Cl3	11	54	63.2	8	H5CNO	16	126	122.4
4	H2OS	3	7	7.7	6	H2C3O	36	161	81.3	8	H6Si2	7	25	129.4
4	P4	4	4	13.8	6	H3CNO	30	159	92	8	H5C2CI	22	133	173.2
4	HCNO	9	22	22	6	H4CO	2	10	98	8	H4C2Cl2	20	133	216.8
4	CN2O	13	35	30	6	H2C4	13	44	117.3	8	H4C2O2	118	782	468.9
4	BCNO	15	32	51.8	6	C2Cl4	7	21	122.5	8	H4N4	58	439	655.2
5	H4C	1	1	6.7	6	H2CO3	29	149	148.2	8	H4C4	32	171	688
5	H2CO2	14	44	16.4	6	H2C2E2	16	61	140.2	8	H4C3O	84	586	971 5
5	HOUN	3	17	17	6	H2C2O2	50	223	233	8	58	+0 60	415	1157.2
5		5	15	10.1	6	H2C2N2	63	3/3	375 1	8		210	957	1035 /
5		2	7	10.1	6		27	72	550	0 8	H2C2O4	581	3032	5873.2
5	HC3N	11	38	25.1	6		217	1054	588.3	0 8		676	5181	8664
5	H3CCI	8	23	32	6		217	222	647	0	H6C3	070	15	104.2
5	CCI4	6	23	32.9	6	Si2O2	62	255	7047	9		7	4J 50	120 5
5	HCO2CI	26	103	40.1	6	31303	201	1010	10115	9		05	607	739.0
5	C2O3	11	37	56	0		201	1210	1044.5	10		90	097	732.9
5	HCN3	19	81	56.7	7		2	10	10 50 1	10		2240	043	2290.5
5	H2N2O	20	77	63.9	7		10	442	50.1	10		3210	23210	1003.2
5	HC2NO	49	191	88.4	/	H4CN2	19	143	89.9	11		1	1440	51
5	CN2O2	34	148	154.8	/	H4CO2	11	50	100.6	11	H/C2NO	151	1413	4526.8
5	BCNOS	122	439	205	7	H5B2	7	39	134.6	11	H6C3O2	1243	10100	12455.7
6	H4C2	2	8	13.5	7	H4C2O	14	100	137.5	14	H10C4	3	35	176
6	H4N2	3	9	15.2	7	H3CNO2	157	1027	461.5	17	H12C5	8	70	972.1

- Explored number of EQs ranges from only 1 to over 3000!
- Explored number of TS increases with the increase of EQ.
- cpu time expands from less than 1 hour to longer than 1 year!

Number of EQs

Number of EQ ranges from only one to over three thousands! Only one EQ: H2O, NH3, CH4, C3H8(propane) Many EQs (Many isomers / Many conformers) **3210** EQ: H5C2NO2 (glycine) 1369 EQ: H6C3O2 (methyl acetate) 676 EQ: H3CNO3 (aminoxy formate)

Number of EQ does not simply depend on the number of atoms!Even if N-atoms are the same, N-EQs can be very much different!N-AtomsN-EQsC3H8 (propane)111H6C3O2(methyl acetate)111369

Number of TSs

Number of TS increases simply with the increase of EQ.

$N(TS)/N(EQ) = 6 \sim 8$

CPU time for GRRM/full-ADDF with a 16-core computer

cpu time expands from less than 1 hour to longer than 1 year!

Formula	cpu time/h
H ₂ O	0.3
HCN	0.7
H ₂ CO	5.1
H ₂ CO ₂	16.4
	• • • • • • •
H2C2O4 5	5873.2 (<mark>0.7 year</mark>)
H ₃ CNO ₃ 8	3664.0 (1.0 year)
$H_{6}C_{3}O_{2}1$	2455 7(1 4 year)

N-EQ cpu time/h H₃CNO₂ 461.5 157 H7C2NO2 151 4526.8 5000 4500 4000 3500 Ten times different! 3000 2500 2000 1500 **O** 1000 500 100 200 300 0 Number of EQ

cpu time is not a simple function

of the EQ number (N-EQ) !

To overcome explosion of cpu-time, we have developed

Multi-Node GRRM/ADDF : NeoGRRM

NeoGRRM: K. Ohno (2012), and K. Ohno, Chem. Rec. 16, 2198 (2016)

Extensive GRRM

for the system of 8-atom

H3CNO3 676 EQ 5181 TS 3161 DC (Dissociation Channel)

at B3LYP/6-31G(d) level via huge numbers of

Force Calculations18719781Hessian Calculations534726

CPU time for this Job took 8661 h (just **1 year**) by One-node GRRM with 16 cores

Ohno, Kishimoto, Iwamoto, Satoh, *J. Compt. Chem.* 38, 669 (2017).

but it was **Shortened** to 240 h (only **10 days**) by Multi-node GRRM with 256 cores

Structural Formula of 47 H3CNO3

Conformers for some compounds of H₃CNO₃

1: Aminoxy formic acid (The most stable compound)

2: Hydroxy carbamic acid

4: Aminoperformic acid 10: Nitroso oxymethanol 10-1 10-2 10-3 10-4 10-5 10-4 10-5 10-5 10-4 10-5 10-5 10-6 10-6 10-6 10-6 10-6

12: Nitromethanol 21: Methyl nitrate 31: Nitrous acid methoxy ester 45: Methoxy dioxaziridine

Reaction pathways via **5181** TS were explored by GRRM/*full*-ADDF.

Local Reaction Route Maps for H₃CNO₃

Connected! or Not connected!

Energy Barrier Heights Δ

Between the same compounds $\Delta < 70 \text{ kJ/mol}$ Between the different compounds $\Delta > 120 \text{ kJ/mol}$

Energy Diagram around compound 2 of H₃CNO₃

Energy Distribution of EQs H3CNO3 (B3LYP/6-31G*)

GRRM elucidated *stereo reaction mechanisms*, which have been eluded experimental observation!

Stereo Reaction Mechnisms (1)

Stereo Reaction Mechnisms (2)

Water-Gas-Shift Reaction

$$\rm CO~+H_2O~\rightleftarrows~CO_2~+H_2$$

is a well-known process producing H₂ from H₂O. 291.2 kJ mol 0.0 k.l mol This reaction has long been H₂O + CO 53.0 kJ mol understood as *three-step* 55 3 k.l mol processes via HCOOH,

but **GRRM/ADDF** has shown that it can be a **single** process.

Harabuchi, Maeda, Taketsugu, Ohno, Chem. Lett. 43, 193 (2014)

Reppe Reaction producing Benzene from acetylene 3 HC=CH \xrightarrow{Fe} C6H6

GRRM/ADDF has shown that it can proceed as **one-step** reaction *without catalyst* !

The mechanism is similar to the Diels-Alder reaction

Tokoyama, Yamakado, Ohno, Bull. Chem. Soc, Jpn. 88, 1284 (2015)

Guided by ADDF,
 GRRM opened
 a new world of chemistry.

2) Aided by GRRM/ADDF,exploration of new chemistrymay be made further on PES.

Next, we made exploration of **new carbon allotropes**

Typical Carbons are composed of C6 or C5 rings

- Graphite & Graphene

Diamond

• Fullerene

Carbon Nano Tube

Some Hydrocarbons have C4 rings

We challenged to produce straight planar ladder forms !

R(CC)=0.144-0.148 nm < 0.154 nm (typical single bond) Ohno, Satoh, Iwamoto, *Chem. Lett.* 44, 712 (2015)

Prism-C₂₀ QTAIM electron density analysis

- a) Critical points
 - Bond Critical Point
 - Ring Critical Point
 - Cage Critical Point
- b) Van der Waals Surface
- c) Density on the decagon face
- d) Density on the square face
- e) Density on the vertical cut

Stability of Prism-C20

GRRM / FirstOnly Search

Lowest Barrier = 158.0 kJ/mol (ZPVE-corrected)

at B3LYP/6-31G(d)

Stabilization Energy = 309.2 kJ/mol

Hamster Wheel Carbons

Prism-C_{2n} (n=8, 9, 10, 12, 14, 16, 18, 20)

Ohno, Satoh, Iwamoto, Chem. Lett. 44, 712 (2015)

Noting unsaturated CC-bond characters, we obtained

Prism-C₂ⁿ Dimer (n=8)

Exploration : B3LYP/6-31G(d) Confirmation: B3LYP/6-311++G(2d,2p) B3LYP/cc-pVDZ B3LYP/cc-pVTZ

D₂h 47 nm 0.141 nm 0.158 nr 47 nm

QTAIM Electron Density Analysis

- Bond Critical Point
- Ring Critical Point
- Cage Critical Point

Stability Analysis

GRRM/ADDF FirstOnly Search

Lowest Barrier = 34.3 kJ/mol (B3LYP/6-31G(d)) 33.4 kJ/mol (B3LYP/cc-pVDZ) ZPVE-corrected

Stabilization Energy = 632.5 kJ/mol (B3LYP/6-31G(d)) 625.8 kJ/mol (B3LYP/cc-pVDZ)

Prism-C_{2n} Trimer (n=12)

Exploration: B3LYP/6-31G(d) Confirmation: B3LYP/cc-pVDZ RHF/STO-3G RHF/3-21G

All Prisms are purely hexagonal. All C-atoms are equivalent and connected with 4-atoms

1-2: 0.1566 nm 1-1': 0.1562 nm

Prism-C_{2n} Sheets

Ohno, Satoh, Iwamoto, Chem. Phys. Lett. 633, 120 (2015)

Vertical polymerization of the prism-unit axially

Prism-C*n* Tubes (*n*=3-8, 10, 12, 14, 16, 18, 20)

Ohno, Tokoyama, Yamakado, Chem. Phys. Lett. 635, 180 (2015)

Stability Check by GRRM/ADDF

Exploration of Wavy Carbons

Wavy Carbon Sheet & Tube

Ohno, Satoh, Iwamoto, Tokoyama, Yamakado, Chem. Phys. Lett. 639, 178-182 (2015)

New Carbon Allotropes explored on Quantum Chemical PES

Prism-C_{2n}(*n*=8, 9, 10, 12, 14, 16, 18, 20)

Chem. Lett. 44, 712 (2015).

Prism-Carbon Tube

Chem. Phys. Lett. 635, 180 (2015).

Prism-Carbon Sheet

Chem. Phys. Lett. 633, 120 (2015).

Wavy Carbons

Chem. Phys. Lett. 639, 178 (2015).

Important : High Energy Carbons

Containing Excess Chemical Energy of 130-350 kJ/mol per one C-Atom.

It is expected that these carbons may become *ideal* **Energy Reservoirs**.

Energy-Charge/Discharge will be made with *no consumption* of materials and with *no production* of wastes.

Low energy Carbon Zero Consumption Zero Emission Usable anywhere at anytime

Summary

 Although only limited results were shown in this talk, exploration of quantum chemical potential energy surfaces will open various new chemistries.

 For such explorations, GRRM program will help you; GRRM programs (*GRRM*14, *GRRM*17) are distributed, available at http://iqce.jp/GRRM/index_e.shtml

Acknowledgement

Development of GRRM:

Satoshi Maeda

(**GRRM**1.2-11-14-17)

Keiji Morokuma

(**GRRM**11-14-17)

- T. Taketsugu (GRRM14-17)
- Y. Harabuchi (GRRM14-17)
- Y. Sumiya (GRRM17)
- M. Takagi (GRRM17)
- K. Suzuki (GRRM17)
- K. Sugiyama (GRRM17)
- M. Hatanaka (GRRM17)

- Application of GRRM: X. Yang
 - B. Hajgato
 - Y. Luo
 - Y. Watanabe
 - M. Moteki
 - T. Iwamoto
 - H. Satoh
 - H. Isobe
 - S. Ohno
 - K. Shudo
 - Y. Matsuda
 - N. Kishimoto
 - H. Yamakado
 - H. Tokoyama
 - Y. Kodaya
 - H. Watanabe

A View from a Saddle Point

A View of a Saddle Point around Mt **ZAO** near Sendai in JAPAN