Hydride-doped gold superatoms: formation, structure, and reactivity

Tatsuya Tsukuda
Graduate School of Science, The University of Tokyo, Japan

Atomically size-selected gold clusters protected by organic ligands or stabilized by polymers provide an ideal platform to test fundamental concepts and size-specific phenomena, such as the superatomic concept and metal-to-nonmetal transition. Recent studies revealed that these stabilized Au clusters take atom-like quantized electronic structures and can be viewed as chemically-modified Au superatoms. An analogy between Au and H is an interesting proposal made for bare Au clusters: an Au atom at a low-coordination site of an Au cluster can be replaced with H while retaining the structural motif and electronic structure. However, this proposal has not been experimentally proved in chemically-modified Au superatoms while a recent theoretical study predicted the formation of $[\text{HAu}_{25}(\text{SR})_{10}]^{-}$ ($\text{RS} = \text{thiolate}$). Investigation of the interaction between H and Au superatoms will deepen our understanding on the role of H in the formation processes of Au superatoms, the effect of adsorbed H on the electronic structure of Au superatoms, and the activity of adsorbed H for hydrogenation catalysis.

This talk introduces our recent studies on the interaction of hydride with two types of chemically-modified Au-based superatoms.

1. $(\text{Au}_9)^{3+}$ and $(\text{PdAu}_9)^{2+}$ superatoms protected by phosphine ligands\(^1\)\(^2\)
 A single hydride was selectively doped to $(\text{Au}_9)^{3+}$ and $(\text{PdAu}_9)^{2+}$ upon reaction with BH$_4^-$ to form hydride-doped superatoms $(\text{HAu}_9)^{3+}$ and $(\text{HPdAu}_9)^{+}$. The structures and growth processes of these hydride-doped Au superatoms were studied experimentally and theoretically.

2. Au$_{34}$ superatoms stabilized by polymers\(^3\)-\(^6\)
 The Au$_{34}$ superatom exhibited the localized surface plasmon resonance (LSPR) band by reacting with BH$_4^-$ due to the electron donation by multiply-adsorbed hydrides. The LSPR band disappeared by exposing hydride-doped Au$_{34}$ to dissolved O$_2$, but reappeared by reaction with BH$_4^-$. Catalysis for hydrogenation of C\equivC bonds was generated by doping a single Pd or Rh atom to Au$_{34}$.
 The results demonstrate that the hydride in chemically-modified Au superatoms mimics the Au atom in terms of electron count. The hydride-mediated growth processes observed will contribute to the development of an atomically-precise, bottom-up method of synthesizing new artificial elements in a periodic table for nanoscale materials. The interaction of hydride with Au superatoms will find application in hydrogenation catalysis and hydrogen sensing.

References: