正確な Non-BO 計算理論と解析的ポテンシャル面

(量子化学研究協会研究所) 中嶋 浩之, 中辻 博

1. 緒言

電子と原子核の運動を分離する Born-Oppenheimer (BO) 近似は、原子・分子の運動を記述 する非常に良い近似であり、通常の化学研究では暗黙に課される仮定である。また、BO 近似 には、化学反応の理解に欠かせない"ポテンシャルカーブ"の概念がある。一方、電子と共に 原子核の運動も量子的に扱う Non-Born-Oppenheimer (Non-BO) 計算は、電子,振動,回転,ス ピンのすべての運動が量子的に取り込まれた解を創出する。特に、極低温下で水素やその同 位体が反応の主役である宇宙星間分子や、水素結合を扱う生体化学の研究に重要である。し かし、従来の量子化学では、電子と原子核の運動を同時に記述することが困難であること、 Non-BO ではポテンシャルカーブの概念が損なわれると考えられてきたことから、実用的な Non-BO 計算はほとんど行われていない。

本研究では、シュレーディンガー方程式の正確な解法として提案された自由完員関数法 (Free Complement (FC) 法) [1]に基づき、正確な Non-BO 計算理論の構築と、小さな分子への 応用を行う[2,3]。FC 法は、ハミルトニアン自身が Non-BO に最適な関数群を自動的に生成す るという重要な特徴がある。また、積分計算を要さない Local Schrödinger Equation (LSE) 法を 用いれば、一般分子への適用も原理的に可能である[4,5]。

表1に、H ₂ 分子と		表 1. H ₂ 分子とその同位体, HeH ⁺ , LiH 分子の Non-BO 計算 ^a				
その同位体(μはミュ		電子基底状態			電子励起状態 ^b	
ーオン、質量はHの		エネルギー (a.u.)	ΔE (a.u.) ^c	Ref. [6-9]	エネルギー (a.u.)	
約 1/9) HeH ⁺ LiH 分	H_2	-1.164 029 84	-4.81×10 ⁻⁶	-1.164 025 030 84	-0.712 335 60	
	HD	-1.165 440 95	3.09×10 ⁻⁵	-1.165 471 922 0	-0.712 993 45	
子の FC-LSE 法によ	HT	-1.165 961 50	-	-	-0.713 299 08	
る Non-BO 計算の結	Hμ	-1.150 180 47	-	-	-0.704 287 23	
果(各電子状能の振	HeH^+	-2.971 084 594 0	-6.13×10 ⁻⁶	-2.971 078 463 6	-1.971 056 055	
秋(日电) 秋志 · · · · · · · · · · · · · · · · · ·	LiH	-8.065 903 65	5.34×10^{-4}	-8.066 437 1	-7.944 307 21	
- 凹転基広状態)	^a H ₂ : <i>n</i> =4, HD,HT,Hµ: <i>n</i> =3, HeH ⁺ : <i>n</i> =4, LiH: <i>n</i> =2, ^b 1 ¹ Σ ₀ と対応, ^c Ref. との差					
を示す。これらは、	-	· · · · •		. ′ ь		

2. FC-LSE 法による小さな分子の Non-BO 計算

初歩的な計算だが、Adamowicz, Bubin らによる精密計算とよく一致している。また、文献に はほとんど報告のない Non-BO 計算における電子励起状態も得られている。

3. Non-BO 計算における電子励起・共鳴状態

Non-BO 計算における電子励起状態は、電子基底状態の連続状態に埋もれており、厳密には共鳴状態とみなせる。本研究では、共鳴状態を求める方法の1つとして知られている複素座標変換法を Non-BO 計算に適用した。この方法により、連続状態に埋もれた物理的な電子励起状態を識別でき、また、核と電子の相互作用により Non-BO で初めて現れる共鳴状態を見つけられる可能性がある。図1は、 H_2^+ とその同位体の複素数固有値のプロットを示している。 H_2^+ では、電子基底・励起状態の間に、電子-原子核の運動の量子化に由来する共鳴状態を見つけた[3]。 D_2^+ , T_2^+ では、この状態の共鳴幅が大きく、 H_2^+ よりも寿命が短いことが分かった。また、質量がHの1/9ほ

どのミューオンから成る μ₂⁺では、この共鳴状態が存在しなかった。これは、μ 核が軽すぎるため、 電子をトラップできないためだと考えられる。

4. 同位体効果を含む Non-BO 解析的ポテンシャルカーブ

BO 近似のポテンシャルカーブは、与えられた原子核 座標上のみで得られる離散的カーブであり、振動解析等 の結果は人為的なフィッティングに強く依存する。一方、 我々は、Non-BO 波動関数から解析関数としてのポテン シャルカーブを直接得る方法を提案した[10]。

図 2 に、 μ_2^+ , H_2^+ , D_2^+ , T_2^+ , $M(20)_2^+$ の Non-BO ポテンシャ ルカーブ(平衡位置付近)を示した($\nu=0$ の波動関数を採用)。 ここで、M(20)は、質量が H の 20 倍の仮想粒子である。 BO 近似のカーブは離散点で示している。質量が重くなる ほど BO 近似に近づき、 $M(20)_2^+$ は BO 近似のカーブとほぼ 重なっている。一方、質量の軽い H_2^+ や特に μ_2^+ は、BO 近 似のカーブからのずれが大きくなっている。R=2.0 a.u.にお けるエネルギーは、BO 近似と比べ H_2^+ では 0.26 mH、 μ_2^+ では 2.27 mH 高かった。また、図 3 は、平衡位置(R=2.0 a.u.) をエネルギー0 の基準としたときのポテンシャルカーブで ある(平衡位置付近を拡大)。カーブの形状も、質量が軽く なるほど BO 近似からのずれが大きくなり、特に μ_2^+ では Non-BO 効果が強く現れている。このように、Non-BO ポテ ンシャルカーブでは、BO 近似では表現できない同位体に よる違いも議論できる可能性がある。

現在、より一般的な分子の正確な Non-BO 計算への応用を目指し、方法・計算アルゴリズ ムの開発を進めている。なお、計算は、分子科学研究所、東工大 TSUBAME グランドチャレ ンジ、「京」の計算機を用いた。深く感謝いたします。

References: [1] H. Nakatsuji, *Phys. Rev. Lett.* 93, 030403 (2004). [2] Y. Hijikata, H. Nakashima, and H. Nakatsuji, *J. Chem. Phys.* 130, 024102 (2009). [3] H. Nakashima, Y. Hijikata, and H. Nakatsuji, *Astrophys. J.* 770, 144 (2013). [4] H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa, *Phys. Rev. Lett.* 99, 240402 (2007). [5] H. Nakatsuji and H. Nakatshima, *J. Chem. Phys.* 142, 084117 (2015). [6] J. Mitroy, S. Bubin et al., *Rev. Mod. Phys.* 85, 693 (2013). [7] S. Bubin, F. Leonarski, M. Stanke, and L. Adamowicz, *Chem. Phys. Lett.* 477, 12 (2009). [8] S. Bubin, M. Stanke, and L. Adamowicz, *Phys. Rev. A* 83, 042520 (2011). [9] S. Bubin, L. Adamowicz, and M. Molski, *J. Chem. Phys.* 123, 134310 (2005). [10] H. Nakashima and H. Nakatsuji, *J. Chem. Phys.* 139, 074105 (2013).