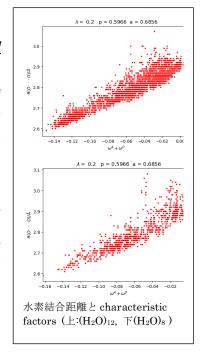

① BSSE の原因:OBI と CBI、②第 2、第 3 隣接分子と水素結合の強さ

慶応大理工1·分子研2 岩田 末廣

iwatasuehiro@gmail.com

① BSSE の原因:OBI と CBI (狩野(千葉エ大)、松澤(千葉エ大)との共同研究)

全系のエネルギーのわずかな部分を占めている分子間の相互作用エネルギーを適切に評価するためには、BSSE(Basis Set Superposition Error)を取り除かなければならない。BSSE(基底関数重ね合わせ誤差)は、近似方法に、解離極限と結合領域で不釣り合いがあることにより生じる。従って1電子基底関数の不均衡(Orbital Basis Inconsistency, OBI)と多電子基底関数の不均衡(Configuration Basis Inconsistency, CBI)によって誤差は


生じるが、広く使われている Counterpoise(CP)法では区別せずに『補正』する。二量体の CP 補正項(基底関数 aug-VxYZ,方法 Ω)は以下のように書ける。1 行目が HF 項に対する 補(OBI)、2 行目が電子相関項に対する補正(OBI と CBI)である。図では①HF 項のみの CP 補正、②HF 項、電子相関項共に CP 補正、③両項とも補正しない曲線を比較している。①

$$\begin{split} E_{\Omega}^{CP}(\mathbf{M}_2; \mathbf{V}\mathbf{x}\mathbf{Z}) &= E_{HF}(\mathbf{M}_2; DB^{\mathbf{V}\mathbf{x}\mathbf{Z}}) + 2[E_{HF}(\mathbf{M}; MB^{\mathbf{V}\mathbf{x}\mathbf{Z}}) - E_{HF}(\mathbf{M}; DM^{\mathbf{V}\mathbf{x}\mathbf{Z}}) \\ &+ E_{\Omega}^{cor}(\mathbf{M}_2; DB^{\mathbf{V}\mathbf{x}\mathbf{Z}}) + 2[E_{\Omega}^{cor}(\mathbf{M}; MB^{\mathbf{V}\mathbf{x}\mathbf{Z}}) - E_{\Omega}^{cor}(\mathbf{M}; DM^{\mathbf{V}\mathbf{x}\mathbf{Z}})] \end{split}$$

と②の比較から電子相関項のCPは「過 大補正」となっている事が分かる。

② 第2、第3隣接分子と水素結合の強さ (赤瀬(広島大)、相田(広島大)、大野(東北大)との共同研究)

水分子間の水素結合の強さは、H供与体(受容体)水分子が どんな水素結合ネットワークの一部になっているかに、 依存していることは広く知られている。水素結合対 $\underline{a} \leftarrow \underline{d}$ は、隣接する水素結合状態を加えて $\{m^a, n^a\}\underline{a} \leftarrow \underline{d}\{m^d, n^d\}$ と 記述できる。 m^a は問題の H 受容体 \underline{a} への H 供与体の数、 n^a は \underline{a} からの H 受容体の数である。この記述方法を第 2、第 3 隣接水素結合まで拡張する。この数値表示を H 受容体 \underline{a} 、H 供与体 \underline{d} に導入する事によって、特性指数 ω^A , ω^D を 定義する事が出来る。この指数には (λ, p, a) の 3 パラメー タしか含まれない。図では 225 の $(H_2O)_{12}$ 異性体中の 4057 対、95 の $(H_2O)_8$ 異性体中の 1041 対水素結合距離を、特性 指数の和 $\omega^A + \omega^D$ の関数で表している。 λ は 0.2 と固定 し、(p, a) を $(H_2O)_{12}$ の集合で決めた。和 $(\omega^A + \omega^D)$ が少なくと も水素結合の強さの上限を決めていることを示す。

¹ 訪問教授(2012-19) 2 名誉教授