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Chapter 5

Molecular orbital and molecular
structure

Various problems in chemistry can be investigated theoretically based on the molecular orbital
method. Theoretical approaches can be grouped into two types; one is the quantitative approach
yielding calculated values which can be compared with experimental values, and the other is the
qualitative approach giving explanation and expectation of experiments. Basic descriptions for the
quantitative approach have been given in the preceding chapter. In this chapter, basic methods
of qualitative treatments and applications to molecular structures and molecular electronic states
will be studied. In the last section of this chapter, relationships among energy levels of molecular
orbitals, ionization energies, and dissociation energies will also be studied in connection with
observed photoelectron spectra.

5.1 Hydrogen molecule ion and hydrogen molecule

5.1.1 Hydrogen molecule ion

A hydrogen molecule ion is composed of two protons and an electron. In Figure 5.1 RA,RB,
and r denote positions of two protons A, B, and the electron, respectively. Fixing the protons at
the distance R, we consider the motion of the electron using the following Hamiltonian operator
Ĥ.

Ĥ = − ~
2

2m
∆− e2

4πε0rA
− e2

4πε0rB
+

e2

4πε0R
(5.1)

rA and rB denote distances between the electron and the protons A and B, respectively. The wave
function ψ representing the motion of the electron is a function of the position of the electron r,
and ψ changes together with the change of the distance R between the protons.

Figure 5.1: The Hydrogen molecule ion H2
+
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Since ψ represents the behavior of the electron wave of a hydrogen molecule ion, it can be
expressed as a superposition of electron waves for isolated hydrogen atoms, which correspond to
electron waves moving around respective protons separately. Thus, ψ of the hydrogen molecule
ion can be expanded as a linear combination of atomic orbitals χA and χB for the hydrogen atoms.

ψ(r) = CAχA(r) + CBχB(r) (5.2)

CA, CB are coefficients representing the weights of the superposition of χA and χB. As χA, χB,
the valence 1s orbital function φ1s for the hydrogen atom is used.

φ1s(r) = π−1/2aB
−3/2e−r/aB (5.3)

For χA and χB, distances rA, rB between the electron and the respective proton A,B should be
used for the variables of φ1s.

χA = φ1s(rA)
χB = φ1s(rB) (5.4)

Now, let us consider the following expectation value u of Ĥ by ψ in eq.(5.2).

u =
∫
ψ∗Ĥψdr∫
ψ∗ψdr

(5.5)

Conditions minimizing this u based on Ritz’s variation method yield the following simultaneous
equations (cf. Section 3.2).

(α− u)CA + (β − uS)CB = 0
(β − uS)CA + (α− u)CB = 0 (5.6)

In place of the following integrals including atomic orbital functions χA and χB, symbols α, β and
S are used in the above equations.

∫
χi
∗Ĥχjdr =

{
α (i = j)
β (i 6= j)

(5.7)

∫
χi
∗χjdr =

{
1 (i = j)
S (i 6= j)

(5.8)

In the above equations, i and j refer to protons A and B, but no specification of A and B need to
be made for α, since two protons are the same particle.

Among the integrals in eqs. (5.7) and (5.8), integrated values depend on the distance R between
the protons, except for the integral of the normalization condition of the 1s function. α, β and
S are integrals including exponential functions, which can be calculated based on mathematical
knowledge in the college level. Although the details will not be mentioned, qualitative features of
these integrals are summarized as follows.

The overlap integral S satisfies the following inequalities.

0 < S < 1 (5.9)

As shown in Fig.5.2, S → 1 in the limit of R → 0, and S → 0 in the limit of R → ∞. α
and β approach +∞ in the limit of R → 0. Although the potential energy due to attractive
forces between the electron and the protons becomes just twice of the case of a hydrogen atom
in the limit of R → 0, the potential energy for the repulsion between the protons corresponding
to the last term of eq.(5.1) diverges to +∞ for R → 0. The value of α for R → ∞ agrees with
the 1s orbital energy E1s of a hydrogen atom, since the interaction with the other proton may
be neglected. The value of β for R → ∞ results in β → 0, because at least one of the orbital
functions becomes to vanish irrespective of the location of the electron. Figure 5.2 also shows the
R-dependence of ua, ub.

In order to obtain nontrivial solutions for the simultaneous equations (5.6) other than CA =
CB = 0, the following secular equation should be satisfied.

∣∣∣∣
α− u β − uS
β − uS α− u

∣∣∣∣ = 0 (5.10)
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Figure 5.2: The R -dependence of α, β and S

We expand this equation to obtain

(α− u)2 − (β − uS)2 = 0

This is a quadratic equation of u, and two solutions ua, ub (let ua > ub for convenience) are given
as follows.

ua = α−β
1−S

ub = α+β
1+S

(5.11)

These two solutions are approximate energy levels of H2
+. ua and ub correspond to the excited

state and the ground-state, respectively. Figure 5.3 shows variations of ua, ub as functions of the
internuclear distance R.

The curve for ub has a minimum giving an internuclear distance Re = 1.32 Å and a binding
energy De = 1.77 eV, which means a production of a stable bond. Corresponding observed values
are Re = 1.06 Å and De = 2.78 eV. These results are not disappointing, since the restriction of
the wave function ψ in the form of eq.(5.2) is a very crude approximation. It is significant that a
brief description of the chemical bonding with Re of 1 Å and De of a few eV is given. The curve for
ua decreases with the increase of R, which gives repulsion between nuclei to lead to dissociation.

Wave functions ψa, ψb corresponding to the respective states are obtained by using relations for
CA and CB, which are derived from insertion of ua, ub into eq.(5.6). The following normalization
condition should also be used.∫

|ψ|2dr = CA
2 + CB

2 + 2CACBS = 1 (5.12)

Insertion of ua into eq.(5.6) gives

(CA + CB)
β − αS
1− S = 0
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Figure 5.3: Potential energies for H2
+

This equation leads to CA = −CB, and by using the normalization condition we obtain for ψa

ψa =
χA − χB√
2(1− S)

(5.13)

Next, using ub similarly we obtain

ψb =
χA + χB√
2(1 + S)

(5.14)

Now, let us consider physical significance of these wave functions ψa and ψb. As can be seen from
eq.(5.2), ψ is a new electron wave produced by interference of electron waves of atomic orbitals
χA and χB with weighting factors of coefficients CA and CB. In ψa signs of two components
CAχA and CBχB are opposite to cancel out each other (Fig.5.4). Such an orbital is called an
antibonding orbital. Interference of electron waves of atomic orbitals effectively occurs at spatial
regions between two nuclei where the orbitals overlap each other. For ψa, electron densities in the
binding region decrease by interference in comparison with the case of no interference, and electron
densities in the antibinding region increase to result in strong repulsion between the nuclei. On
the other hand for ψb, two components are constructive with the same sign. Such an orbital is
called a bonding orbital. In the case of ψb, electron densities in the binding region increase to
produce binding forces between the nuclei (Fig. 5.4). The bonding in the hydrogen molecule
ion is due to an electron shared in the binding region between two nuclei, and thus this kind of
bond is called the one-electron bond. Although treatments here are approximate, the following
two findings are important; (1) electron distribution determined by interference between electron
waves lead to binding or anti binding forces, and (2) only one electron can produce a bond.
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Figure 5.4: Interference of electron wave of atomic orbitals

5.1.2 The hydrogen molecule

The first explanation based on quantum mechanics was made for the mechanism of the chemical
bond in a hydrogen molecule by W. Heitler and F. London in 1927. According to their valence
bond method, a bond is formed by interactions between atoms approaching each other. This
method is thereafter a standard version of the theory of the chemical bond in many textbooks.
Long after in 1962 J. R. Reudenberg made a careful analysis of the binding energy in the valence
bond method, and he disclosed that the balance of potential and kinetic energies, which is related
with the virial ratio studied in Section 4.2, is incorrect in the method by Heitler and London.
Recent developments of computers have considerably increased the advantage of the molecular
orbital method, and thus we do not deal with the valence bond method.

The molecular orbital method mentioned in Section 4.3 gives potential energy curves for a
hydrogen molecule as shown in Fig.5.5. E(H2) and E(H) denote energies of a hydrogen molecule
and a hydrogen atom, respectively. R and aB are the internuclear distance and the Bohr radius,
and both of the ordinate and the abscissa are normalized to the atomic unit. Even in the SCF level
a stable chemical bond is formed, and the configuration interaction method (CI) considering the
electron correlation effects gives a much better result in comparison with the experiments. The
molecular orbital method and its application to many molecules including the hydrogen molecule
will be described in detail in the following Sections.
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Figure 5.5: The potential energy of the hydrogen molecule H2. The ordinate shows E(H2)−2E(H)
2|E(H)|

5.2 The Hückel molecular orbital method

Precise calculations by the ab initio molecular orbital method produce considerable amounts of
computed results due to the huge size of the calculations, which often leads to confusions in the
interpretation. In general, the larger basis set in the linear combination method yields the better
accuracy at the expense of the simplicity. Many basis functions inevitably make it difficult to
understand obtained wave functions in terms of interference of electron waves. These difficulties
in interpretation and understanding also lead to difficulties in scientific analyses and prediction
without calculations.

In order to avoid such difficulties in interpretation and understanding, even specialists of molec-
ular orbital calculations dare to perform simple calculations with the minimal basis (cf. Section
4.3) for the basis functions and carefully investigate constructions of molecular orbitals. With-
out numerical calculations, shape of orbitals as well as energy levels can be briefly anticipated
on the basis of drastically simplified molecular orbital methods. In this section, we study the
Hückel molecular orbital method, since it has been used as the most suitable method to discuss
the qualitative nature of molecular orbitals.

5.2.1 Fundamental treatments in the Hückel method

In the Hückel molecular orbital method, which is sometimes called the Hückel method or the
HMO method, shape and energies of orbitals are obtained without numerical integrations as far
as possible. Although there are many integrals in the basic equations, various quantities included
in the secular equation are replaced by parameters with characteristic values depending on the
elements or bonding types.

Molecular orbitals {φi} in the Hückel method are expressed as linear combinations of atomic
orbitals {χq}.

φi =
∑
q

Cqiχq (5.15)

Here, {χq} are assumed to be normalized atomic orbital functions. Unless necessary, real functions
are used for {χq}, and coefficients of the linear combinations are also treated as real numbers. In
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some special cases such as ring molecules with periodicity, complex numbers should be used for
{Cqi} exceptionally. Molecular orbitals {φi} should be normalized by the following condition.

∫
φi

2dr =
∑
p

∑
q

CpiCqiSpq = 1 (5.16)

Spq is the overlap integral between χp and χq given by the following equation.

Spq =
∫
χpχqdr (5.17)

Since {χq} are assumed to be normalized, {Spp} are all equal to the unity. The absolute value
of {Spq} for p 6= q, which is in general smaller than 1, becomes very small to be neglected, if the
distance between p and q is very large. {Spq} represent how much extent electron waves of the
atomic orbitals are overlapping, and thus they are called overlap integrals.

Molecular orbitals {φi} are determined from the following one electron eigen equation.

ĥφi = εiφi (5.18)

Here, ĥ is the one-electron Hamiltonian operator determining the electron motion. This ĥ in-
cludes an operator corresponding to the kinetic energy of an electron and average potentials of
interactions between electrons as well as attractive potentials from nuclei. The problem to obtain
{φi} and {εi} begins with the condition minimizing the expectation value εi of ĥ with {φi} by
changing {Cqi}. This is a variational problem in terms of linear combinations, which leads to the
following simultaneous equations.

∑
q

(Hpq − εiSpq)Cqi = 0 (5.19)

Here, Hpq is given by the following equation.

Hpq =
∫
χpĥχqdr (5.20)

Hpq is called the Coulomb integral for p = q with writing Hpp = αp and called the resonance
integral for p 6= q with writing Hpq = βpq. Resonance integrals as well as overlap integrals can be
neglected, since they become very small when p and q are in a long distance.

Orbital energies εi are obtained from the following secular equations (cf. Section 3.2).

|Hpq − εiSpq| = 0 (5.21)

Inserting orbital energies εi from the solutions of eq.(5.21) into eq.(5.19) and using normalization
conditions of eq.(5.16), {Cqi} are obtained.

5.2.2 The simple Hückel method

According to the policy of the Hückel method that numerical calculations of integrals should
be avoided as long as possible, the simple Hückel method adopts further simplifications with the
following approximations. The traditional Hückel method is this method, which can be compared
with the extended Hückel method mentioned in the next subsection and is called as the simple
Hückel method. In the conventional Hückel method, the π electron approximation is usually
adopted. If α and β are carefully estimated, the Hückel method can be applied to the more
general cases.

(1) Neglect of overlap integrals Spq (p 6= q)
Overlap integrals Spq for p 6= q are much smaller than the case of Spp = 1, and thus they can

be neglected.

Spq = δpq =

{
1 for p = q

0 for p 6= q
(5.22)
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This approximation leads to the following equations much more simplified than eqs. (5.19) and
(5.21).

∑
q

(Hpq − εiδpq)Cqi = 0 (5.23)

|Hpq − εiδpq| = 0 (5.24)

In addition, the normalization condition for molecular orbitals is also simplified as follows.
∑
q

Cqi
2 = 1 (the summation should be taken for all atomic orbitalsχq) (5.25)

Since the assumption of eq.(5.22) corresponds to the expansion in terms of the orthonormal set
{χq} by eq.(5.15), the summation of coefficients of all molecular orbitals {φi} satisfys the following
formula.

∑

i

Cqi
2 = 1 (the summation should be taken for all molecular orbitalsφi) (5.26)

(2) Neglect of resonance integrals β for non-bonded atomic pairs
βpq as well as Spq become very small when χp and χq become spatially far apart. However,

for bonded atomic pairs βpq are considered, since they are very important. βpq for non-bonded
atomic pairs are disregarded.

(3) Parameterization of resonance integrals β for bonded atomic pairs
Depending on combinations of atomic orbitals, βpq is treated as a parameter. In many cases,

numerical values for β are not necessarily given. Sometimes β is determined by experiments.
Although the sign of β is important, it depends on the type of bonds (cf. Section 5.3).

(4) Parameterization of Coulomb integrals α
Depending on the type of atomic orbitals, Coulomb integrals are treated as parameters. α

equals approximately to the atomic orbital energy, and its sign is always negative. |α| is equal
to the energy required to remove an electron from the atomic orbital, which is approximately the
ionization energy. Although α can often be used with no value, the relative magnitude as well as
its sign are very important.

5.2.3 The Extended Hückel method

Although the simple Hückel method is a convenient method, it cannot be applied to a system in
which positions of chemical bonds are not clear. For example, metal complexes as well as organic
compounds having complex structures are not suitable for the simple Hückel method method.
Thus, the extended Hückel method exceptionally evaluating overlap integrals was proposed, and
it has been extensively used as an improved approach, though such a treatment is clearly against
the policy avoiding numerical integrations as far as possible. The extended Hückel method is
based on the fundamental formula of eqs. (5.15)∼(5.21) as well, and some further approximations
used are summarized as follows.

(1) Overlap integrals Spq are evaluated by direct integration using atomic orbitals functions
{χq}. In many cases, STOs mentioned in Section 4.3 are used.

(2) Resonance integrals Hpq = βpq (p 6= q) are estimated by the following approximate formula.

βpq = KSpq
αp + αq

2
(5.27)

Here, αq is a Coulomb integral involving an atomic orbital χq, and the constant K is set as
K = 1.75. This formula can be deduced as follows. In the eq.(5.20) defining the resonance
integral, replacement of the operator ĥ by an assumed constant value of a leads to βpq = aSpq,
and also in eq.(5.20) assumption of a simple average of the integrals for p = q in place of the
integral for p 6= q yields βpq = (αp + αq)/2. These characteristics are combined into the formula
(5.27). This formula (5.27) leads to an important relationship that the resonance integral βpq
and the overlap integral Spq have opposite signs, because K > 0 and αp < 0, αq < 0 based on
the reasons given below. Also in the simple Hückel method, the resonance integral βpq and the
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overlap integral Spq have opposite signs.
(3) Coulomb integral Hqq = αq is nearly equal to the energy of the atomic orbital χq, and thus

αq is estimated by the following formula using the ionization energy Iq of the electron in χq.

αq = −Iq (5.28)

Here, Iq is positive, and αq is negative. An atom with strong negativity has a large ionization
energy Iq, which leads to a large value of |αq|. Oppositely, |αq| for an atom with weak negativity
becomes small. Magnitudes of |αq| for orbitals of valence electrons are usually in the range of 5
eV - 30 eV. On the other hand, magnitudes of |αq| for atomic orbitals of inner shell electrons have
much larger values in the range of several hundreds or thousands eV.

5.3 Overlap between orbitals and orbital interactions

Molecular orbitals (MO) are composed of atomic orbitals (AO), (1) mathematically linear com-
binations of functions, and (2) physically superposition of electron waves, and (3) chemically
mixture of ingredients. Composition of molecular orbitals made of some atomic orbitals is in
general governed by interactions between orbitals. Overlap of orbitals leads to interactions and
mixing of orbitals, which results in formation of new orbitals. In this section, the mechanisms
involved in the formation of new orbitals associated with overlap between orbitals are studied on
the basis of Hückel molecular orbital method.

5.3.1 Overlap between orbitals

In the Hückel method, the magnitude of the resonance integral |β| is most important for the
formation mechanisms of molecular orbitals from atomic orbitals via interference of electron waves.
The detail of the reason will be discussed below. Here, we will study characteristics of overlap
integrals, since there is a relationship of eq.(5.27) that β is proportional to the overlap integral S.

Overlap integrals depend on types and combinations of atomic orbitals as well as on the distance
between the nuclei at which the atomic orbitals are placed. Typical cases are illustrated in Fig.5.6.

In this figure, as an s orbital and a p orbital, 1s and 2p orbital functions are used, respectively.
In order to represent the spatial distribution of each orbital, a circle is used for an s orbital, and
a pair of ellipses are used for a p orbital. Signs of the functions are specified by + and − in
the figures. Absolute values of atomic orbital functions are generally decreasing to vanish with
the distance becoming very large. It should be noted that the same sign of electron distributions
extending outside of the circles and the ellipses.

Fig.5.6(a) shows the R dependence of an overlap integral between two p orbitals having parallel
directions, which decreases monotonically. Such an overlap between parallel p orbitals is called the
π type orbital, and chemical bonds originating from this type of overlaps are called the π bonds. In
π type overlaps, the axis connecting the atoms is included in a common nodal plane of the atomic
orbitals. In a π orbital produced by the π type overlap, probabilities of finding an electron on the
nodal plane containing the bond axis are vanishing. Fig.5.6(b),(c),(d) show the R dependence of
overlap integrals between orbitals with no common nodal plane including the bond axis. These
types of overlaps are called the σ type overlap, and chemical bonds originating from this type of
overlaps are called the σ bonds. Although the overlap integral is not necessarily monotonous in
the σ type, the overlaps become decreasing until vanishing on going to a large distance in R as in
the case of the π type overlap. This is related to the general tendency that, associated with the
increase of the overlap between orbitals approaching each other, the interference between electron
waves becomes to be more significant.

In Fig.5.6(e)(f), overlap integrals are shown for combination of orbitals with and without a
nodal plane including the bond axis, contrary to other cases. Although the absolute values of the
orbital functions are the same at a pair of symmetrical points with respect to the plane including
the bond axis, their signs are opposite for one orbital and the same for the other orbital. It follows
that overlap integrals of these orbital functions are always vanishing irrespective of the distance
R, because the lower and the upper contributions cancel out mutually. This type of overlaps
is called the overlap without symmetry matching. When overlaps are vanishing, necessarily no
interference occurs, and hence no bonds are formed.
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As will be studied in detail below, the formation of a chemical bond is governed by the overlap
between orbitals. This is called the principle of overlap, and interactions between orbitals are called
orbital interactions. The magnitude of interorbital interactions depend on the magnitude of |β|
or |S|. According to the principle of overlap, the orbital interaction is forbidden for β = 0(S = 0)
and allowed for β 6= 0(S 6= 0). The relationship of orbital interactions with overlaps between
orbitals can be summarized as follows. [Orbital interactions and overlap between orbitals]

(1) Orbitals without symmetry matching (S = 0) do not interact with each other.

(2) Orbitals with overlaps (S 6=) interact with each other.

(3) The magnitude of an orbital interaction increases with the increase of the overlap (|S|).
(4) Orbital interactions become negligibly small for long distances (large R) and become large

when the overlap increases for short distances.

Figure 5.6: Overlap (overlap integrals S) between various atomic orbitals
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5.3.2 The principles of orbital interactions

Let us study by the simple Hückel method the mechanism of orbital interactions between a
pair of atomic orbitals χA and χB with orbital energies of αA and αB and their mutual resonance
integral of β, yielding a molecular orbital of φ = CAχA +CBχB with an orbital energy of ε. First,
we obtain ε by solving the secular equation (5.24). In this case, HAA = αA, HBB = αB, HAB =
HBA = β, and thus the secular equation becomes

∣∣∣∣
αA − ε β
β αB − ε

∣∣∣∣ = 0 (5.29)

Denoting the left-hand side as f(ε) and expanding the determinant, we obtain a quadratic equation
of ε.

f(ε) = ε2 − (αA + αB)ε+ αAαB − β2 = 0 (5.30)

Let us consider the following two cases depending on whether β is equal to zero or not.
For β = 0, factorization can easily be made to give f(ε) = (ε − αA)(ε − αB) = 0, and two

solutions become αA and αB, which results in no changes from the original orbital energies and
orbital functions. Such simple solutions of (εA = αA, φA = χA) and (εB = αB, φB = χB) satisfy
the eq.(5.18), ĥφA = εAφA and ĥφB = εBφB, to give no orbital mixing. It follows that for β = 0
there are no interactions between the orbitals to keep the orbital functions unchanged in their
original forms.

Next, let us consider variations of orbital energies for β 6= 0. We may use a convenience to set
αA ≥ αB without losing the generality. Calculations of f(αA) and f(αB) lead to the following
equation.

f(αA) = f(αB) = −β2 < 0 (5.31)

Since f(ε) is a quadratic function with a concave in a parabolic form, there exist two solutions of
εa, εb(εa ≥ εb), and we obtain the following inequality.

εa > αA ≥ αB > εb (5.32)

As verified later, the higher orbital energy εa corresponds to the energy level of the antibonding
orbital, and the lower one εb corresponds to that of the bonding orbital.

These results can be summarized as the rules for orbital-energy changes.

Rules for orbital-energy changes
For a non-vanishing resonance integral (β 6= 0) orbital interactions give new orbital

energies (εa > εb) which are different from the initial energies; the higher one (εa) is
higher than the higher initial orbital energy of αA, and the lower one (εb) is lower than
the lower initial orbital energy of αB .

Such changes of orbital energies are illustrated in Fig.5.7 for easy understanding; A and B at
a long distance in the initial state are placed on both ends, while the new state for A and B in a
short distance is shown in the middle of the figure.
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Figure 5.7: Orbital interactions

Amounts of the stabilization energy of (αB − εb) and the destabilization energy of (εa − αA) are
found to be the same and are denoted as ∆.

αB − εb = εa − αA = ∆ =

√
(αA − αB)2 + 4β2 − (αA − αB)

2
(5.33)

This quantity ∆ is an index indicating how much extent the stabilization and the destabilization
occur by interactions between orbitals.

In order to see what governs the extent of stabilization and destabilization ∆, let us study the
possible range of ∆. Noting the convention of αA ≥ αB, introducing a quantity t (t ≥ 0) defined
as t = (αA − αB)/2|β|, and further defining a function F (t) =

√
t2 + 1− t, we obtain

∆ = F (t)|β| (5.34)

The function F (t) decreases from F (0) = 1 monotonously with the increase of t for t ≥ 0 and
approaches 0 in the limit of t→∞, which results in 1 ≥ F (t) > 0. Thus we obtain the following
inequalities.

|β| ≥ ∆ > 0 (5.35)

The equality in the left holds for t = 0, that is αA = αB, which gives the maximum of ∆. The
magnitude of ∆ is governed by the following two factors.

(1) The principle of the energy difference
One of the factors is the energy difference between αA and αB. The smaller it becomes,
the smaller t becomes to yield the larger F (t) resulting in the larger ∆. This indicates that
the smaller energy difference between orbitals leads to the larger interactions between these
orbitals. Conversely, a very large energy difference between orbitals such as one of valence
orbitals and one of the inner shell orbitals leads to negligibly small interactions. Such an
effect by the energy difference of |αA − αB| on orbital interactions is called the principle of
the energy difference.

(2) The principle of the overlap
Another factor is |β|. When it becomes large, t becomes small to lead to a large F (t).
In eq.(5.34), ∆ is expressed as a product of F (t) and |β|. Thus, the larger |β|, the larger
∆. Since |β| can be considered to be proportional to |S|, the larger the overlap between
orbitals becomes, the larger interactions between orbitals become. Conversely, the smaller
the overlap as well as |β|, the smaller the orbital interactions. Such an effect of |β| or |S| on
the extent of orbital interactions is called the principle of the overlap.
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Next, let us consider forms of new orbitals produced by orbital interactions. From simultaneous
equations of eq.(5.23), the following equation is obtained for CA and CB.

CB

CA
=
ε− αA

β
(5.36)

Substituting εa or εb into this equation and using t = (αA−αB)/2|β| (t ≥ 0) again, we obtain the
following equation.

CB

CA
= −|β|

β
(t±

√
t2 + 1) (5.37)

The plus symbol of ± in this formula gives (CB
b/CA

b) for the bonding orbital (φb, εb), and the
minus one gives (CB

a/CA
a) for the antibonding orbital (φa, εa).

Since for the bonding orbital t +
√
t2 + 1 ≥ 1 at any value of t ≥ 0, we obtain the following

inequalities.

|CB
b| ≥ |CA

b| (5.38)
CA

bCB
bβ < 0 (5.39)

Equation (5.38) shows that in the bonding orbital φb = CA
bχA +CB

bχB, a contribution of CB
bχB

from the lower atomic orbital χB is dominant. Since the lower orbital is the more electronegative,
electrons in the bonding orbital are displaced on the more electronegative atom. This explains
the electric polarization associated with the formation of a chemical bond.

The equation (5.39) shows the constraint of the relative phases (signs) between the two orbital
components. Using the relation of the opposite signs between the overlap integral S and the
resonance integral β, we obtain

CA
bCB

bSAB ⇐⇒ −CA
bCB

bβ > 0 (⇐⇒ indicates the opposite signs to each other)

Here, we should note that the sign of the overlap integral SAB =
∫
χAχBdr is equal to the sign

of χAχB in the geometrical regions (the overlap regions) where absolute values for χAχB become
large. Thus, we obtain the following inequality.

(CA
bχA)(CB

bχB) = CA
bCB

bχAχB ⇐⇒ CA
bCB

bSAB > 0 (5.40)

This result shows that in the bonding orbital φb = CA
bχA + CB

bχB the first component CA
bχA

and the second component CB
bχB have the same sign (phase) in the overlap regions of χA and χB.

Thus, electrons in the bonding orbital brings the positive interference strengthening the electron
waves with the same sign, and hence electron densities in the overlap regions are increased. It
follows that augmented electron densities between the nuclei result in binding forces acting on the
two nuclei.

In the case of the antibonding orbital, always 1 ≥ √t2 + 1− t > 0 for t ≥ 0. Thus, we obtain.

|CA
a| ≥ |CB

a| (5.41)
CA

aCB
aβ > 0 (5.42)
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Equation (5.41) shows that in the antibonding orbital φa = CA
aχA + CB

aχB, the contribution
from the higher atomic orbital χA is dominant. Using eq.(5.42), an analogous discussion with the
case of the bonding orbital leads to the following inequality.

(CA
aχA)(CB

aχB)⇐⇒ CA
aCB

aSAB ⇐⇒ −CA
aCB

aβ < 0 (5.43)

This indicates that in the antibonding orbital φa = CA
aχA + CB

aχB the first component CA
aχA

and the second component CB
aχB have the opposite signs (phases) in the overlap regions of χA

and χB. Thus, electrons in the antibonding orbital brings the negative interference canceling out
the electron waves with the opposite signs, and hence electron densities in the overlap regions are
decreased. It follows that the decreased electron densities between the nuclei result in antibinding
forces repelling two nuclei each other.

Next, let us consider the extent of orbital mixing. When one of the coefficients is zero, the extent
of mixing is minimum. Thus, we introduce the following quantity µ representing the extent of
mixing.

µ =

∣∣∣∣∣
CA

b

CB
b

∣∣∣∣∣ =
∣∣∣∣
CB

a

CA
a

∣∣∣∣ =
√
t2 + 1− t (5.44)

The right side equals to F (t) introduced before, which satisfies 1 ≥ F (t) > 0 for t = (αA −
αB)/2|β| ≥ 0. Thus, µ increases with the decrease of t. It follows that the extent of orbital mixing
is governed by the principle of the energy difference and the principle of the overlap, as in the
case of the extent of orbital energy changes.

The mechanisms producing new orbitals from mixing of two orbitals due to orbital interactions
are summarized as rules of orbital mixing as follows.

Rules for orbital mixing When a pair of orbitals χA and χB (αA ≥ αB) having mutual
overlap (the resonance integral is not vanishing) interact with each other, a pair of new
orbitals φa and φb (εa > αA ≥ αB > εb) are produced (cf. Fig.5.7). Among them, the
bonding orbital φb is made mainly of the lower orbital χB together with a small contribution
of the higher orbital χA in the same phase. On the other hand, the antibonding orbital φa is
made mainly of the higher orbital χA together with a small contribution of the lower orbital
χB in the opposite phase. The extent of variation from the form of the main component,
namely the extent of mixing, is governed by the principle of the energy difference and the
principle of the overlap. Especially for αA = αB (a case with no energy difference), mixing
of the two components are equally weighted.

Summarizing the above mentioned rules for orbital-energy changes, rules for orbital mixing,
the principle of the energy difference, and the principle of the overlap, we denote these rules and
principles as the principles of orbital interactions.

[The principles of orbital interactions]

(1) Without orbital interactions (β = 0), the orbital energy and form remain unchanged.

(2) With nonvanishing orbital interactions (β 6= 0) (cf. Fig.5.7), both the orbital energy and the
form are changed. A bonding orbital is formed, which is stabilized than the lower (relatively
the more negative) initial orbital χB among a pair of orbitals χA and χB(αA ≥ αB). On
the other hand, an antibonding orbital is formed, which is destabilized than the higher
(relatively the more positive) initial orbital. The extent of mixing is such that the lower
orbital is the main component for the bonding orbital, whereas for the antibonding orbital
the main component is the higher one. If the energy difference between orbitals is vanishing
(αA = αB), two components are equally weighted.

(3) The extent of orbital-energy changes and orbital mixing is governed by the energy difference
and the overlap; they become larger for the smaller energy difference and the large overlap,
and conversely they become smaller for the larger energy difference and the smaller overlap.
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Example 5.1 (The two to one orbital interactions)
Two orbitals of χA and χB of one species having orbital energies of αA and αB(αA > αB)

are mutually orthogonal and interact with another orbital χC of the other species (denoted as
the partner) having an orbital energy of αC . Respective resonance energies are βAC and βBC

(βAC 6= 0, βBC 6= 0). Answer the following questions.
(1) Derive the following inequalities for three orbitals produced by interactions, which are denoted
as εa, εm, εb in the order of the higher energies.

εa > αA > εm > αB > εb

(2) Orbitals corresponding to the orbital energies of εa, εm, εb are denoted as φa, φm, φb. Explain
relative phases of the atomic orbital components χA, χB, χC in the new orbitals qualitatively,
based on the principles of orbital interactions.

(Solution)
(1) Because of the mutual orthogonality between χA and χB , SAB = 0 and thus the resonance

integral is vanishing (βAB = 0). Considering the given condition, we obtain the secular equation
for the simple Hückel method.

∣∣∣∣∣∣

αA − ε 0 βAC

0 αB − ε βBC

βAC βBC αC − ε

∣∣∣∣∣∣
= 0

Expanding this equation and denoting it as f(ε),

f(ε) = (αA − ε)(αB − ε)(αC − ε)− βAC
2(αB − ε)− βBC

2(αA − ε)

This is a cubic function of ε including −ε3. In order to know the regions giving solutions, we look
up signs of f(αA) and f(αB).

f(αA) = −βAC
2(αB − αA) > 0, f(αB) = −βBC

2(αA − αB) < 0

Thus, the equation f(ε) = 0 has different three real solutions (εa, εm, εb), as can be seen from a
figure below. Since αA > αB, εa is in the region of ε > αA, (εm) is in the region of αA > ε > αB,
and (εb) is in the regions of αB > ε. It follows that εa > αA > εm > αB > εb.

(2) According to the principle of orbital interactions (cf. Fig.5.7), the contribution of an orbital
lower than the new orbital is in the opposite phase with respect to the other orbital along an
upward arrow, and the contribution of an orbital higher than the new orbital is in the same phase
with respect to the other orbital along a downward arrow. These characteristics can be applied
to relative phases of the components in new three orbitals (from the highest, φa, φm, φb), which
are produced by interactions of the higher χA and the lower χB orbitals with the orbital χC of
the partner as follows.
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φa : With respect to χC of the partner, both χA, χB interact upward in the opposite phase to
yield a highly antibonding orbital.

φm : With respect to χC of the partner, the higher χA interacts downward in the same phase,
and the lower χB interacts upward in the opposite phase, to produce a weakly bonding or
antibonding orbital depending on the magnitude of interactions with χC.

φb : With respect to χC of the partner, both χA, χB interact downward in the same phase to
give a highly bonding orbital.

5.4 AH type and AH 2 type molecules

The principle of orbital interactions studied in the previous section can be used to deducing
form and energy levels of molecular orbitals qualitatively. Let us first summarize procedures using
the principle of orbital interactions. Then we will apply it to simple hydride molecules and study
mechanisms for production of the electric polarization in chemical bonds and mechanisms for
determination of the bond angles.

5.4.1 Procedures using the principle of orbital interactions

Let us summarize procedures using the principle of orbital interactions for various problems.
For readers who want to study from concrete examples, the next section for AH type molecules
may be studied without reading this section, and if necessary, he may come back to refer this
section.

[1] Consider electronic configurations for each system before interactions. Show energy levels to
be considered in both sides separately. Usually energy levels from inner-shell electrons to valence
electrons should be considered. Energy levels much higher than valence electron levels need not
be considered from the beginning, since interactions with valence electrons can be neglected due
to the principle of the energy difference. Treatments of inner-shell electrons are rather simple, and
thus inner-shell electrons can be disregarded except for considering the total number of electrons.
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[2] Using rules for orbital-energy changes in the principle of orbital interactions, deduce new
energy levels, and show them in the intermediate space between the initial levels in both sides.
Consider strengths of the interactions based on the principle of the energy difference and the
principle of the overlap. Levels with no appreciable interactions should be shown at the same
heights as before, since no level shifts are expected for them. Bonding orbitals should be stabilized
to the lower energy, and antibonding orbitals should be unstabilized to the higher energy.

[3] When orbital forms are needed to be considered, deduce forms of new orbitals using the
rules for orbital mixing in the principle of orbital interactions. For graphical illustrations, show
an s orbital as a circle and a p orbital as a pair of ellipses in the figure of 8. Contributions of
the components can be expressed by the size of circles and ellipses. Phases can be indicated by
plus and minus symbols, or the signs can be specified by two ways of drawings, such as solid and
dashed lines, thick and thin lines, or white and black paintings. The phase for the first component
may be arbitrarily chosen, though the relative phases of other components should be represented
in accordance with the first choice.

[4] Build up the new electronic configuration by placing electrons from both sides into new
orbitals according to the Pauli principle. In the case of degenerate levels, Hund’s rule should also
be considered. Electrons should be shown as ↑ or ↓ in the energy levels in order to represent their
spins. The choice of the spin for the first unpaired electron may be arbitrary. If spins can be
disregarded, ◦ or • may be placed in the level diagram in place of the arrows.

5.4.2 AH type molecules

Chemical bonds between different atoms have an electric polarization. In order to discuss the
electric polarization of bonds in connection with the bond formation, let us consider a H2 molecule
followed by LiH and HF molecules as typical examples of polar molecules.

H2 molecule
Show energy levels of two H atoms in the right and the left sides separately. In this case, the

electronic configuration of a H atom includes only one electron in 1s orbital, and thus only 1s
energy level should be shown in the left and the right sides as in Fig.5.8. The higher energy levels
such as 2s orbital need not be shown, since interactions of the 1s orbital with other orbitals in the
higher levels can be neglected on account of the principle of the energy difference.

Figure 5.8: Molecular orbitals of H2

Use rules for orbital-energy changes to deduce new energy levels. In this case, interactions
between two 1s orbitals of H atoms due to a σ type overlap lead to a bonding orbital of 1sσ and
an antibonding orbital of 1sσ∗. The bonding orbital is stabilized to the lower energy with respect
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to the 1s energy level of a H atom, and the antibonding orbital becomes more unstable to the
higher energy.

Use rules for orbital mixing to deduce forms of new orbitals. Interactions between equivalent 1s
orbitals lead to a couple of orbitals made of one to one mixing of two components. The bonding
orbital has the same phase, while the antibonding orbital has the opposite phase.

In the final step, two electrons from the left and the right H atoms should be placed in the new
energy levels from the lower one. In this case, the bonding 1sσ orbital accepts an electron pair,
and they produce the stabilization of two bonding electrons. Since the 1sσ orbital is composed
of even contributions of the left and the right H1s orbitals, no electric polarization appear in the
bond formed between the H atoms.

The bond in a H2 molecule is formed by augmented electron densities between two nuclei due
to a pair of electrons in a molecular orbital, and it follows that this bond can be considered as a
prototype of a covalent bond or an electron-pair bond.

LiH molecule
Show energy levels for both atoms in the right and the left sides separately. Only 1s orbital

may be considered for a H atom as in the case of a H2 molecule. For a Li atom with the electronic
configuration (1s2)(2p)1, only 1s and 2s electrons need to be considered. The Li1s orbital is an
inner-shell orbital, whose ionization energy is much larger than those for valence orbitals. On
the other hand, the energy level for the Li2s orbital is higher than that for the H1s orbital. This
situation can be understood from the fact that the ionization energy of a Li atom is much smaller
than that of a H atom, because the electronegativity of a Li atom is much smaller than a H
atom. Since the Li2p levels are not so much higher than the 2s levels, the Li2p levels had better
be considered as well. However, we omit contributions from the Li2p orbitals, because the same
conclusion will be obtained for the chemical bond of a LiH molecule. The higher levels such as
Li3s and H2s levels need not be considered, since they are considerably higher than the valence
electron levels.

Figure 5.9: Molecular orbitals of LiH

Based on the principle of the energy difference, the Li1s level, which is much lower than the H1s
level, becomes the most stable level with its orbital form unchanged from the shape of the Li1s
orbital. This new orbital is the most stable orbital classified as a σ orbital, and thus it is called 1σ
orbital. Next, one to one interactions between Li2s and H1s orbitals lead to the 2σ orbital, which
is more stable than the lower H1s orbital, and the 3σ orbital, which is more unstable than the
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higher Li2s orbital. The 2σ orbital is a bonding orbital, which is made mainly of the lower H1s
orbital together with a small contribution of the higher Li2s orbital in the same phase. Valence
electrons, one from Li and another from H, become an electron pair in the 2σ orbital for LiH.
The dominant component of this electron pair is H1s, and it follows that the electron distribution
is concentrated on the H atom to yield a strong polarization. Thus a LiH molecule is highly
ionic with the negative charge on the H atom (cf. Table 5.1). This is consistent with the larger
electronegativity of a H atom in comparison with a Li atom. The 3σ orbital is an antibonding
orbital, which is made mainly of the higher Li2s orbital.

Table 5.1: Electric polarization for diatomic molecules
Electric dipole moment Dissociation energy Equilibrium internuclear distance

Aδ+Bδ− |µ|(10−30 C m) D0(eV) R(pm)
H2 0.0 4.4781 74.144
HF 6.1 5.84 91.71
HCl 3.6 4.43 127.46
HBr 2.7 3.75 141.4
HI 1.4 3.06 160.9
LiH 19.4 2.5 159.6
LiF 21.0 6.6 156.4
NaF 27.2 5.3 192.6
NaCl 30.0 3.58 236.1

HF molecule
Electron configurations of the atoms are H(1s)1 and F(1s)2(2s)2(2p)5, and only orbitals con-

tained in these configurations may be considered (Fig. 5.10).
F1s is an innershell level, and its energy is very low. Since a F atom is more electronegative and

has larger ionization energy than a H atom, F2p level is lower than H1s level. F2s level is further
lower than F2p level. The innershell F1s orbital may be treated to have no interaction with H1s due
to the principle of the energy difference, and thus it becomes the most stable molecular orbital 1σ
in a HF molecule, whose shape is nearly the same as the shape of a F1s atomic orbital. Interactions
among valence orbitals are one to four interactions between H1s and F2s,F2px,F2py,F2pz. On
account of the symmetry for overlaps, these interactions are decomposed into the simpler ones.

H1s orbital is symmetric with respect to an arbitrary plane including the bonding axis (the
axis connecting H and F atoms is taken as z axis), and thus H1s orbital does not interact with
F2px and F2py orbitals having directions perpendicular to z axis and pararell with x and y axes.
It follows that F2px and F2py levels become degenerate 1π levels for molecular orbitals of a HF
molecule without modification from the atomic orbitals. These orbitals retain the shapes of the
F2p atomic obitals having perpencicular directions to the bonding axis. After all, the remaining
F2s and F2pz orbitals undergo two to one interactions with H1s to yield 2σ orbital, which is a
bonding orbital having a dominant component of F2s orbital in the same phase with the H1s
component and morestable than the lower F2s level. To this bonding orbital F2pz orbital gives a
samll contribution in the same phase with the H1s component to strengthen the bonding character.

Since the contribution of H1s to 2σ is small, 2σ orbital has a strong electric polarization with
the negative side on the F atom. 3σ level appears between the lower F2s and the higher F2pz
levels. 3σ orbital contains an out-of-phase contribution of the lower F2s orbital from the downward
to the upward and an in-phase contribution of the higher F2pz orbital from the upward to the
downward with respect to H1s, and the main contribution is F2pz with the nearer energy level to
result in a weakly bonding orbital having a negative electric polarization on the F atom. 4σ level
is higher than the higher F2pz and in this case much higher than H1s. 4σ orbital is composed of
out-of-phase contributions of both the higher F2pz and the lower F2s with respect to H1s, which
results in a strongly antibonding orbital having H1s orbitals as the main component.

Ten electrons, one from H and nine from F, are accommodated in the energy levels form the
lower ones as electron pairs to give an electron configuration of (1σ)2(2σ)2(3σ)2(1π)4, as can be
seen from Fig.5.10. 1σ orbital is an inner shell orbital, and hence it does not contribute to the
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Figure 5.10: Molecular orbitals of HF

bonding force. The degenerate 1π orbitals almost purely composed of atomic F2p orbitals with a
pair of electrons are nonbonding orbitals, and these may be considered as unshared electron pairs
without bonding characters. 2σ and 3σ orbitals show bonding characters, and both orbitals have
a negative electric polarization on the F atom. Thus, a HF molecule has an electric polarization
with the negative side on the F atom (Fig.5.1).

Although both HF and LiH molecules have two electrons in a bonding orbital producing an
enhancement of electron densities in the bonding regions between the two nuclei to result in a
contribution of the electron-pair bond, the bond is highly polarized as an ionic bond in a NaCl
molecule. In such a marginal case, the electron-pair bond and the ionic bond cannot clearly be
distinguished from each other.

5.4.3 AH 2 type molecules

In an AH2 type molecule such as H2O, the bond angle is an important parameter for the
molecular structure in addition to the bond length. Here, we will study composition of molecular
orbitals for AH2 type molecules from BeH2 to H2O and elucidate the mechanism for bond angles.
Now, let us construct molecular orbitals of an AH2 type molecule according to the following
procedures.

[ 1 ] Step 1 in Fig.5.11
At first, advance a H atom toward another H atom up to a distance (ca.1.4 Å) approximately

two times larger than the normal bond length of a H2 molecule. This process produces formally
a bonding 1sσ level and an antibonding 1sσ∗ level, though the level shifts for stabilization and
destabilization are small, because of a very small overlap due to the long distance. Forms of
the produced orbitals are in-phase and out-of-phase combinations of H1s components, and these
orbitals for a pseudo-hydrogen molecule are denoted as a bonding φb orbital and an antibonding
φa orbital, respectively.

[ 2 ] Step 2 in Fig.5.11
Next, introduce the A atom (Be ∼ O atoms) along a line bisecting the bond of the pseudo-

hydrogen molecule (denoted as the z-axis) from the infinity toward the center of the bond up to a
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Figure 5.11: Molecular orbitals of an AH2 type molecule (the right angle form)

distance just producing a right angle form. Via this procedure, we can easily construct molecular
orbitals for the right angle form of an AH2 molecule based on interactions between orbitals of a
pseudo-hydrogen molecule and 1s, 2s, 2p orbitals of the A atom.

[ 3 ] Step 3 in Fig.5.12
Finally, vary the bond angle θ from the right angle form to the linear form with keeping the

bond length constant, and study changes in the energy level diagram.
Composition of a right angle form AH2 molecule
Composition of molecular orbitals of the right angle form begins with a set of 1s, 2s, and 2px,

2py, 2pz orbitals for energy levels of the A atom (Be∼O atoms). Among interactions of these
orbitals with orbitals of the pseudo-hydrogen molecule, some interactions can be considered to
be negligible. First of all, the 1s orbital of the A atom can be considered as a molecular orbital
1σ with the energy and orbital form almost unchanged, based on the principle of the energy
difference, because the energy level of the inner shell 1s orbital of the A atom is very low.

Next, a direction bisecting the H–H with a right angle is taken as the z axis as shown in Fig.5.11,
a direction parallel to H–H passing through the A atom is taken to be the y axis, and the normal
direction to the y–z plane is taken as the x axis. A2px orbital is an antisymmetric orbital with its
sign alternating depending on the position up or down with respect to the y–z plane, whereas both
of 1sσ and 1sσ* orbitals are symmetric with respect to this plane. On account of the difference of
the orbital symmetries, A2px orbital does not interact with 1sσ and 1sσ* orbitals, and then A2px
orbital becomes a molecular orbital 1π of the AH2 molecule with nearly the same energy as the
atomic energy level.

The remaining interactions are classified into two types, (1) interactions among symmetric or-
bitals with respect to the x–z plane, and (2) interactions among antisymmetric orbitals with
respect to the x–z plane. For orbitals symmetric to the x–z plane, 1sσ, A2s, and A2pz orbitals
interact with each other, according to the two to one orbital interactions. The most stable level
arising from these interactions is located under the level of A2s orbital. The corresponding molec-
ular orbital 2σ includes A2s orbital as a main component in addition to a component of A2pz,
which mix with the central part of 1sσ between two H atoms in the same phase. This molecular
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Figure 5.12: Molecular orbitals of an AH2 type molecule as functions of the bond angle θ

orbital is a bonding orbital binding all three atoms mutually. The orbital energy level with an
intermediate stability arising from the two to one orbital interactions appears between A2s and
A2pz levels. This intermediate level corresponds to 4σ orbital. This orbital is composed of an
inpahse component from upward to downward for the upper A2pz as well as an out-of-phase
component from downward to upward for the lower A2s, and this orbital becomes antibonding
between A and H and weakly bonding between H and H. As mentioned below, electrons in this
orbital have an effect causing the angle ∠HAH smaller.

The most unstable level arising from the two to one orbital interactions becomes higher than
1sσ and A2pz levels. The corresponding orbital is composed of the upper A2pz and the lower A2s,
which mix with 1sσ in out-of-phase at the central part of H and H, and thus this orbital becomes
5σ molecular orbital, which is antibonding between A and H and almost nonbonding between H
and H.

Antisymmetric orbitals with respect to the x–z plane, 1sσ* and A2py, interact with each other
according to the one to one orbital interactions. The bonding orbital energy level arising from the
interactions appears lower than both of 1sσ* and A2py orbital levels, and an in phase overlap of
these two orbitals between A and H atoms gives a bonding type 3σ molecular orbital. The reason
why this 3σ is lower than 4σ will be explained below.

The most important interactions are those between A2p and H1s orbitals. In the case of the
right angle type, the direction of the p orbital component with respect to the AH bond is in the
angle of 45◦ for both 3σ and 4σ orbitals. Therefore, overlaps between A2p and H1s orbitals are
nearly the same for these cases. However, for 4σ orbital a contribution due to A2s, which overlaps
with H1s in an opposite phase contrary to the case of A2p, gives a weaker bonding character in
the AH region than 3σ. This results in the higher energy level of 4σ than that of 3σ.

The most unstable energy level is due to 6σ orbital, which is a strongly antibonding orbital
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composed of out-of-phase overlaps of 1sσ* and A2py. This level is thus much higher than 1sσ*
and A2py levels.

Changes from the right angle form to the linear form
Let us study changes of energy levels on going from the right angle form of the bond angle

θ = 90◦ to the linear form of θ = 180◦. As for the lowest level, 1σ, which is almost entirely
composed of A1s, is nearly independent of θ to give a horizontal line. Next, 2σ slightly goes
up with the increase of θ, because the in-phase overlap between two H atoms decreases and also
because the in-phase contribution of A2pz becomes vanishing at 180◦ by the symmetry. Since
the overlap between H1s and A2pz increases on going to the linear form, 3σ becomes a strongly
decreasing curve toward larger angles. On the other hand, 4σ goes upwards on going to the linear
form, because the in-phase overlap between two H atoms as well as the in-phase contribution of
A2pz decrease, and finally it becomes a moiety of the degenerate π orbitals in the linear form.
Since 1π orbital of the right angle form does not interact with other orbitals by the symmetry even
if the θ increases up to 180◦, its energy level remains to be horizontal. Although the antibonding
character of 5σ has a little change, 6σ becomes more strongly antibonding and increases its energy
on going to the linear form.

A graphic representation of orbital energies as functions of bond angles such as Fig.5.12 is called
the Walsh diagram. As discussed below, we may anticipate bond angles qualitatively based on
the Walsh diagram.

5.4.4 The Walsh diagram and the bond angle

When an electron is inserted in a level descending with the angle in Fig.5.12, it has a function
opening the bond angle, since the system tends to decrease its energy. Conversely, an electron in
a level ascending with the angle has an opposite function closing the bond angle. A horizontal
level has no effect on the bond angle, since no energy change with angles is expected irrespective
of the occupation number of electrons. Based on these principles, we can discuss a relationship
between the bond angle and the number of valence electrons for the AH2 molecule, as can be seen
in Table 5.2.

Table 5.2: Molecular structures of AH2 type molecules and electron configurations. The bond
angle and the bond lenglth for BeH2 are theoretical values obtained from accurate calculations,
since no experimental values are available. Other data are experimental values.

Number of Bond angle Bond length Electron configuration
AH2 valence electrons θ◦ RAH(pm) 1σ 2σ 3σ 4σ 1π Spin state

BeH2 4 180 133 ↑↓ ↑↓ ↑↓ Singlet
BH2 5 131 118 ↑↓ ↑↓ ↑↓ ↑ Doublet
CH2 6 136 108 ↑↓ ↑↓ ↑↓ ↑ ↑ Triplet
CH2 6 102.4 111 ↑↓ ↑↓ ↑↓ ↑↓ Singlet
NH2 7 103.4 102 ↑↓ ↑↓ ↑↓ ↑↓ ↑ Doublet
H2O 8 104.5 96 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ Singlet

In BeH2 there are four valence electrons, two from a Be atom and one from each H atom, and
thus two levels up to 3σ are doubly occupied. Since 3σ level is steeply descending to the larger
angles as can be seen from Fig.5.12, the linear form with a bond angle of 180◦ is most stable for
BeH2.

There are five valence electrons in BH2, and one electron is added into 4σ level in comparison
with BeH2. Careful studies on the angular dependence of overlaps between p and s orbitals lead
to a conclusion that the energy change between 90◦ and 180◦ for 4σ is twice as large as that for
3σ. It is thus expected that one electron in 4σ nearly cancels out effects of two electrons in 3σ.
This indicates that the bond angle of BH2 may be in the middle of 90◦ and 180◦, which is in good
agreement with the observed angle of 131◦.

Methylene CH2 has one more electron. Based on the right angle form, doubly occupied levels
from 1σ to 4σ results in a singlet state of methylene, which is expected to have a much smaller
bond angle than 131◦ in BH2. The observed bond angle 102.4◦ for a singlet methylene is really
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much smaller than the bond angle of BH2. On the other hand, in the linear structure, 4σ and
1π have the same energy to degenerate. Thus, Hund’s rule suggests a triplet state in which one
electron added as an unpaired electron into 1π has a parallel spin with that of an unpaired electron
in 4σ. In a triplet methylene, levels from 1σ to 3σ are doubly occupied, whereas 4σ and 1π are
singly occupied. An electron in the 1π level with a constant energy has no effect on the bond
angle. It follows that the bond angle of a triplet methylene is expected to be nearly equal to
the angle of BH2 (131◦), which agrees well with the really observed angle of 136◦ for a triplet
methylene.

Further addition of an electron leads to an amino radical NH2 with seven valence electrons. In
this case, one electron addition to either methylene results in the same electron configuration, in
which levels from 1σ to 4σ are doubly occupied, while an electron occupies 1π level. Since 1π
electron is not related to bond angle changes, the bond angle of NH2 is expected to be nearly
the same as the bond angle for the singlet methylene (102.4◦) with an electron configuration of
fully occupied levels up to 4σ, which is in good agreement with the really observed bond angle of
103.4◦ for NH2.

In the last H2O of the series, all levels up to 1π are doubly occupied. As 1π electrons are not
related to the bond angle, the bond angle of H2O is expected to be similar to those for the singlet
methylene (102.4◦) and NH2 (103.4◦). This expectation agrees well with the observed angle of
104.5◦ for H2O.

5.5 A 2 type molecules

There are many types of bonds with various strengths. It is interesting to study how such
varieties of chemical bonds are formed. In this section, let us qualitatively construct molecular
orbitals and their energy levels of A2 type molecules and study electron configurations and bond
orders.

Figure 5.13: Orbital interactions in A2 type molecules
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A diatomic molecule A2 composed of the same kind two A atoms is denoted as the homonuclear
diatomic molecule. Since larger overlaps and smaller energy differences give stronger orbital
interactions, construction of molecular orbitals of an A2 molecule can be started with simple
interactions between couples of the same type orbitals to obtain Fig.5.13. In-phase combinations
yield bonding orbitals of σs, σp, πp, and out-of-phase combinations give antibonding orbitals of
σs∗, σp∗, πp∗. πp and πp∗ orbitals are composed of π type overlaps of p orbitals with directions
vertical to the bonding axis z. Thus, two types of p orbitals with directions of x and y axes lead
to the two-fold degeneracy for πp and πp∗ orbitals.

In many electron atoms, orbital energy levels are in the order of ns < np, and overlaps between
orbitals are in the order of πp < σp. It follows that when the energy difference between ns and np
levels (ns− np energy gap) is very large, energy levels for an A2 type molecule can be expressed
by Fig.5.13 or Fig.5.14(a), σp becomes more stable and lower than πp. On the other hand, σp∗
becomes higher than πp∗. Fig.5.13 or Fig.5.14(a) expresses the standard pattern of energy levels
in A2 type molecules with large ns− np energy gaps. This pattern can be applied to right hand
atoms in the periodic table.

In left hand atoms in the periodic table, interactions between s orbitals and p orbitals become
significant, because ns − np energy gaps are small as shown in Fig.5.14(b). It follows that the
same symmetry orbitals, (σs, σp) and (σs∗, σp∗), mix with each other to yield modified energy
levels. Rules for mixing in orbitals can be summarized as follows.

(1) The lower orbital increases its bonding character (or decrease its antibonding character) to
decreases its energy.

(2) The higher orbital increases its antibonding character ( or decrease its bonding character)
to increases its energy.

Figure 5.14: Energy levels for homonuclear diatomic molecules
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For example, the more stable σs is formed by a little mixing of σp into σs in order to increase
in-phase overlap in the middle regions between two nuclei. The more stable σs∗ is produced by
a little mixing of σp∗ into σs∗ so that out-of-phase overlap may be decreased to strengthen the
bonding character relatively. Modified energy levels for A2 type molecules make the σp level
higher than the πp∗ level in comparison with the standard form.

Whether a chemical bond is formed or not depends on the electron configuration in the energy
levels of Fig.5.14(a) or (b). As a qualitative index that indicates the strength of the bond in an
A2 type molecule, the bond order can be defined by the following equation.

P =
(number of electrons in bonding orbitals− (number of electrons in antibonding orbitals)

2
(5.45)

According to this equation, a pair of bonding electrons give a bond order of unity. In this equation,
a pair of electrons in an antibonding orbital decrease the bond order by one. This definition of
the bond order is a useful index to understand the multiplicity of electron-pair bonds(covalent
bonds).

Let us compose electron configurations based on Fig.5.14 and obtain bond orders by using
Eq.(5.45). H2 has an electron configuration of (σ1s)2, and its bond order is given as P = (2−0)/2 =
1. Thus the hydrogen molecule has a single bond with a pair of bonding electrons. He2 has an
electron configuration of (σ1s)2(σ1s

∗)2 leading to a bond order of P = (2− 2)/2 = 0. P = 0 does
not give a stable chemical bond. In the case of Li2, σ2s orbitals contain electrons (see Fig.5.15), the
electron configuration becomes (σ1s)2(σ1s

∗)2(σ2s)2. In this expression, inner core 1s electrons of
(σ1s)2(σ1s

∗)2 corresponds to the electron configuration for He2. This part gives no contribution to
the bond order. Thus, only valence electrons are significant in the bond order. The configuration
of valence electrons in this case is (σ2s)2, and thus the bond order for Li2 becomes P = 1 as in
the case of (σ1s)2 in H2. In general, a homonuclear diatomic molecule of the first Group element
(H, Li, Na, K, etc.) in the periodic table has an electron configuration of (σns)2 (n = 1, 2, 3, · · · ),
and atoms are connected by a single bond of P = 1.

In Be2 σ2s
∗ also contains a pair of electrons, and the valence electron configuration becomes

(σ2s)2(σ2s
∗)2 to give P = 0, which means no chemical bond as in the case of He2. Similarly, a

homonuclear diatomic molecule of the second Group element of the periodic table is expected not
to form a stable molecule. However, diatomic molecules of Mg2 and Ca2 do exist though their
bonds are thermally unstable to decompose very easily. The dissociation energy D0 of Ca2 is only
0.13 eV, which is 3% of D0(4.478 eV) of H2.

Figure 5.15: Valence electron configurations for Li2 −Ne2

B2 has six valence electrons, and the last two electrons are contained in either π2p or σ2p. In
the case of a B atom, the s-p gap is so small that the modified type of energy levels in Fig.5.14
should be used, and degenerate π2p levels accept two electrons. It follows that the valence electron
configuration of B2 becomes to be a triplet with a pair of unpaired electrons with a parallel spin
owing to Hund’s rule as can be seen in Fig.5.15. Thus, a group of B2 molecules show paramagnetic
properties that an application of a magnetic field yields a magnetization along the direction of
the field. In B2, contributions to the bond order from (σ2s)2 and (σ2s

∗)2 cancel out each other,
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and then only a contribution from (π2p)2 remains to give P = 1. Therefore, a B2 molecule has a
π bond, which is considered as a single bond with a bond order of 1.

In C2 π2p accepts electrons prior to σ2p as in the case of B2, and the π2p orbital becomes
the HOMO. The chemical bond in C2 is a double bond P = 2 composed of two π bonds. It
is interesting to compare B2 and C2 molecules. The dissociation energy of a doubly bonded C2

molecule (6.21 eV) is nearly twice as large as that of a B2 molecule (3.02 eV). The equilibrium
bond length of C2 is much shorter than B2.

N2 is just at the border of the standard and the modified types in Fig.5.14. Either type gives
the bond order of P = 3 for the bond of a N2 molecule, which is a triple bond made up of two π
bonds and one σ bond. Experiments such as photoelectron spectroscopy give a confirmation that
the HOMO is σ2p rather than π2p, which indicates that the modified levels are more consistent
with the observation. The dissociation energy of a N2 molecule (9.759 eV), which is slightly larger
than triple times of the dissociation energy of B2 (3.02 eV), is the largest among homonuclear
diatomic molecules.

In O2 the standard type should be used because of the large 2s-2p gap, and hence the degenerate
antibonding π2p

∗ orbitals become to be the HOMOs to yield a triplet type electron configuration.
The bond order of O2 should be decreased by one from that of N2, because two additional electrons
are accommodated in the antibonding orbitals, and thus an O2 molecule has a double bond made
up of one π bond and one σ bond. The electron configuration of O2 is a triplet of two unpaired
electrons with a parallel spin as in the case of B2, and it follows that oxygen has paramagnetic
properties. In F2 further addition of two electrons in π2p

∗ orbitals decreases the bond order by
one from that of O2, which makes a single bond of a σ bond.

In the electron configuration of Ne2, electrons fully occupy up to σ2p
∗, and bonding characters

gained by bonding orbitals are completely canceled by antibonding electrons to result in a bond
order of P = 0. It follows that a stable Ne2 molecule is expected not to exist as in the case of He2.
However, Ne2 really exists under a special condition in which thermal effects are not effective to
decompose molecules. The dissociation energy of Ne2 is very small as 0.0036 eV, which is about
one tenth of the kinetic energy of a molecule in gaseous state at room temperature.

Table 5.3 lists valence electron configurations, bond orders, dissociation energies, equilibrium
nuclear distances for homonuclear diatomic molecules and some of their ions. When properties are
compared among A2 type molecules of the same row elements, the larger the bond order becomes,
the larger the dissociation energy becomes, and then the shorter the bond length (equilibrium
internuclear distance) becomes. When a comparison is made among A2 type molecules of the same
Group elements, the bond strength for P > 0 is larger for the higher elements. This indicates that
upper row atoms have compact electron orbitals to result in shorter distances between augmented
electron densities in the bonding region (the covalent electron pair) and two nuclei, which causes
strong binding forces between the nuclei. Very weak bonds of P = 0 such as Mg2, Ca2, Ne2, and
Ar2 are quite different from the usual electron-pair bonds (covalent bonds), and their dissociation
energies become larger on going to the lower rows in the periodic table.

Example 5.2 Obtain the bond order P of O2
+. Compare the dissociation energy D0 and the

bond length R of O2
+ with those of O2 and N2.

(Solution) The electron configuration of O2
+ is given by (σ2s)2(σ2s

∗)2(σ2p)2(π2p)4(π2p
∗)1, in which

the number of electrons in π2p
∗ is decreased to one from two in the case of O2. Noting 8 electrons

in bonding orbitals and 3 electrons in antibonding orbitals, we obtain the bond order of O2
+ as

P (O+
2 ) = (8− 3)/2 = 2.5.

Since O2 has one more antibonding electron than O2
+, the bond order of O2 can easily be

obtained as P (O2) = 2. In N2 an antibonding electron is removed from the electron configuration
of O2

+, and thus P (N2) = 3. In general, the larger P becomes, D0 becomes larger and R becomes
smaller. It follows that we obtain the following conclusions (see Table 5.3).

Dissociation energy D0(N2) > D0(O2
+) > D0(O2)

Bond length R(N2) < R(O2
+) < R(O2)
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Table 5.3: Electron configurations and structures for homonuclear diatomic molecules and ions

Molecule Valence electron configuration Bond order Dissociation energy Bond length
σ2s σ2s

∗ σ2p π2p π2p
∗ σ2p

∗ D0(eV) R(pm)
H2 2 1 4.4781 74.144
He2 2 2 0
Li2 2 1 1.046 267.29
Be2 2 2 0
B2 2 2 2 1 3.02 159.0
C2 2 2 4 2 6.21 124.25
N2 2 2 2 4 3 9.759 109.77
O2 2 2 2 4 2 2 5.116 120.75
F2 2 2 2 4 4 1 1.602 141.19
Ne2 2 2 2 4 4 2 0 0.0036 309
Na2 2 1 0.73 307.9
Mg2 2 2 0 0.0501 389.1
Si2 2 2 2 2 2 3.21 224.6
P2 2 2 2 4 3 5.033 189.34
S2 2 2 2 4 2 2 4.3693 188.92
Cl2 2 2 2 4 4 1 2.4794 198.8
Ar2 2 2 2 4 4 2 0 0.0104 376
K2 2 1 0.514 390.51
Ca2 2 2 0 0.13 427.73
Br2 2 2 2 4 4 1 1.9707 228.11
Kr2 2 2 2 4 4 2 0 0.0160 400.7
I2 2 2 2 4 4 1 1.5424 266.6
Xe2 2 2 2 4 4 2 0 0.0230 436.2
H2

+ 1 0.5 2.648 106.0
He2

+ 2 1 0.5 2.365 108.1
N2

+ 2 2 1 4 2.5 8.71 111.64
O2

+ 2 2 2 4 1 2.5 6.663 111.64
Ar2

+ 2 2 2 4 4 1 0.5 1.33 248
Kr2

+ 2 2 2 4 4 1 0.5 1.15 279
Xe2

+ 2 2 2 4 4 1 0.5 1.03 317
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5.6 Hybridization of orbitals

In the preceding sections, we studied some examples how orbitals are mixed to form new orbitals
via orbital interactions. In some cases, both of two orbitals in one atom interact with an orbital
in the other atom. In such cases, new orbitals can be considered to be produced from interactions
of hybrid orbitals composed of two orbitals in one atom with orbitals of the other atom. In this
section, we will study hybridization of orbitals and some applications of hybrid orbitals.

5.6.1 Mixtures of orbitals in the same atom

Let us study effects of mixtures of orbitals in the same atom. As shown in Fig.5.16(a), a mixture
of px and py orbitals becomes equivalent with a p orbital with a direction rotated in the x − y
plane. The direction depends on coefficients of the linear combination, and any direction within
the plane including the axes of the two p orbitals is possible. a mixture of three p orbitals, px, py,
and pz, may produce a p orbital with arbitrary direction in the full three dimensional space. It is
thus possible to reorganize p orbitals to produce the most suitable linear combination to overlap
efficiently with the orbital of the incoming atom or molecule, even if the other species comes from
any direction. Basically, selection of directions of p orbitals or choice of coordinates can be made
arbitrarily for computational convenience. However, essential characteristics of orbital interactions
do not depend on the choice of the coordinate system, and this nature of orbital interactions can be
denoted as the invariance in the coordinate system. Reorganization of p orbitals is an important
property that guarantee the invariance in the coordinate system.

Next, we will study mixtures of an s orbital and p orbitals of the same atom. Since a mixture
of p orbitals is equivalent to one p orbital with a suitable direction, we only need to consider a
mixture of one s orbital and one p orbital. The result can be seen in Fig.5.16(b); a constructive
effect occurs in the direction where phases coincide for s and p orbitals, whereas the mixing effect
is destructive in the opposite direction. These effects result in a production of a big lobe at the
in-phase direction together with a small lobe at the opposite direction. Such an augmentation
of directional properties associated with mixture of the same atom orbitals to produce a highly
directional orbital is denoted as hybridization, and produced orbitals are called hybridized orbitals
or hybrid orbitals.

Figure 5.16: Mixing effects of the same atom orbitals. (a) Directional change on mixture of p
orbitals with different directions. (b) Augmentation of direction on mixture of s orbital and p
orbital (the hybridization effect).
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Hybrid orbitals have the following important characteristics related to formation of chemical
bonds.

[Characteristic features of hybrid orbitals]

(1) Directionality becomes higher, and the overlap with a coming species from the direction
increases.

(2) The electron distribution of itself becomes asymmetric, and electron densities at the aug-
mented direction become higher to produce a strong attractive force between its nucleus and
the incoming nucleus.

Although many textbooks comment only on the feature (1), the feature (2) is also very impor-
tant, as easily be understood from Feynman’s electro static theorem in Section 4.2. In addition,
a mixture of 2p orbitals into 1s orbital as well as a mixture of 3d orbitals into 2s and 2p orbitals
also have some effects mentioned above.

Such mixing effects of higher orbitals other than valence orbitals on deformation of electron dis-
tributions around an atom are denoted as polarization effects. Additional functions with higher
azimuthal quantum numbers other than valence orbitals to improve basis functions are called
polarization functions. In comparison with hybridization effects of orbital mixing among orbitals
of the same principal quantum number, polarization effects are rather moderate by the principle
of the energy difference, since polarization effects involve orbitals with higher principal quan-
tum numbers. Calculations with minimal basis sets which only contain valence orbitals include
hybridization effects but neglect polarization effects.

5.6.2 sp hybridization

One to one hybridization of valence s and p orbitals gives sp hybrid orbitals, which are composed
of mutually orthonormal two orbitals expressed as follows.

φa = s+z√
2

φb = s−z√
2

(5.46)

Here, we used (pz) orbital as the p orbital. pz and s orbital functions are expressed simply as z
and s. Two hybrid orbitals in eq.(5.46) are equivalent for their energies and shapes, though the
directions are different with a mutual angle of 180◦ as can be seen in FIg.5.17. The energy of
sp hybrid orbitals εsp is just an average value of orbital energies of s and p orbitals, which are
expressed as αs and αp, respectively.

εsp =
αs + αp

2
(5.47)

sp hybrid orbitals lead to linear molecules of A−B−C or A−B−C−D (such as BeCl2,HgBr2,HCN,C2H2)
linearly connected by σ bonds with bond angles of 180◦. In HCN and C2H2, in addition to CNσ
and CCσ bonds formed by sp hybridization two sets of π bonds due to πtype overlaps by p or-
bitals with directions parallel to the σ bond, and it follows that triple bonds of C≡N and C≡C
are formed.

5.6.3 sp2 hybridization

From one s orbital and two p orbitals (px and py orbitals, whose functions are expressed simply
by x and y), we can construct a set of three hybrid orbitals, φa, φb, φc, which are equivalent in
energies and shapes with directions mutually 120◦ displaced within a plane (Fig.5.17) and denoted
as sp2 hybrid orbitals.

φa = 1√
3
s +

√
2
3x

φb = 1√
3
s− 1√

6
x + 1√

2
y

φc = 1√
3
s− 1√

6
x− 1√

2
y

(5.48)
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Figure 5.17: spn hybrid orbitals (n = 1, 2, 3)

These orbitals satisfy the orthonormality. Since electron density is proportional to |φ|2, squares of
atomic orbital coefficients give relative magnitude of s and p components; the s orbital component
is estimated as (1/

√
3)2 = 1/3, and the p orbital component is (

√
2/3)2 = (1/

√
6)2 + (1/

√
2)2 =

2/3. It follows that s : p = 1 : 2. The energy of sp2 hybrid orbitals εsp2 is an average value of
orbital energies of s and p orbitals with weights of s : p = 1 : 2.

When sp2 hybrid orbitals make three σ bonds with other species in the directions of 0◦, 120◦, 240◦,
they produce triangle form molecules such as NH3

+,BH3,BF3 with all bond angles of 120◦ and
ethylene C2H4 in which angles are slightly deformed form 120◦, ∠HCH = 117.5◦. Benzene C6H6

can also be produced by sp2 hybridization. In ethylene and benzene, π type overlaps between
out-of-plane p orbitals which are not involved in sp2 hybridization yield π bonds. Thus, an ethy-
lene molecule has a CC double bond. Six CCπbonds in benzene are equivalent, and they have an
intermediate character between a single bond and a double bond, which can be confirmed from
bond-orders by molecular orbital methods.

5.6.4 sp3 hybridization

From one s orbital and three p orbitals (orbital functions are expressed simply by x, y, and z),
we can construct a set of four hybrid orbitals, φa, φb, φc, φd, as shown in Fig.5.17. Energies and
shapes of these orbitals are equivalent, and they are directed to four corners from the center of a
tetrahedron.

φa = s+x+y+z
2

φb = s+x−y−z
2

φc = s−x−y+z
2

φd = s−x+y−z
2

(5.49)

These orbitals satisfy the orthonormality. The electron density is proportional to |φ|2. Thus,
squares of atomic orbital coefficients give relative magnitude of s and p components. The s orbital
component is estimated as (1/2)2 = 1/4, and the p orbital component is (1/2)2 × 3 = 3/4. It
follows that s : p = 1 : 3. The energy of sp3 hybrid orbitals εsp2 is an average value of orbital
energies of s and p orbitals with weights of s : p = 1 : 3.

εsp3 =
αs + 3αp

4
(5.50)

When sp3 hybrid orbitals make four σ bonds with other species, they produce tetrahedral
molecules such as CH4, SiH4,NH4

+ with the tetrahedral bond angles of 109.47◦.



CHAPTER 5. MOLECULAR ORBITAL AND MOLECULAR STRUCTURE 130

5.6.5 other types of hybridization

In addition to the above hybrid orbitals, some other types of hybrid orbitals involving d or-
bitals are important. As shown in Table 5.4, they are related to formation of various molecular
structures.

Table 5.4: Hybridization and moelcular structures

Hybrid orbital Structure Bond angle Example
sp Linear form 180◦ C2H2,HCN,BeH2,HgCl2
sp2 Equilateral traiangle 120◦ BF3,NH3

+,C6H6

sp3 Tetrahedron 109.47◦ CH4,NH4
+, SiH4, SO4

2−

dsp2 Square plane 90◦ Ni(CN)4
2−
,AuCl4−

sp3d Trigonal-bipyramid 90◦ 120◦ 180◦ PCl5,AsF5, SbCl5 (Note)
d2sp3 Octahedron 90◦ Co(NH3)6

3+
,PtCl62−

sp3d2 Octahedron 90◦ SF6

(Note) The trigonal-bipyramid structue of PCl5 can be explained by
three-center-two electron bonds as discussed below.

Example 5.3 Explain the molecular structure of ethylene C2H4 using hybrid orbitals.

(Solution) In each C atom, three sp2 hybrid orbitals together with a perpendicular p orbital can
be considered for valence orbitals, and four valence electron are inserted in either one of the four
orbitals. A combination of sp2 hybrid orbitals of two C atoms yields a CC bond due to σ type
overlaps. Remaining two sp2 hybrid orbitals with angles of 120◦ with respect to the CC bond axis
can be used to form a pair of CHσ bonds of σ type overlaps, which results in a production of a
CH2 unit. In this step, two CH2 units can rotate with each other along the CC bond axis, since
the CC bond is a single bond, which can rotate freely to have an arbitrary angle of the rotation.

However, an overlap between a pair of p orbitals remaining at each C atom produces a CC
bond due to the π type overlap, which is most effectively formed, when the p orbitals have
parallel directions, namely two CH2 become coplanar. Thus, between two C atoms, one CCσbond
between two sp2 hybrid orbitals and additionally one CCπ bond from a pair of parallel p orbitals
are formed to give a CC double bond. On account of the restriction of the rotation around the CC



CHAPTER 5. MOLECULAR ORBITAL AND MOLECULAR STRUCTURE 131

axis by the π bond, all six atoms are located in a plane, and it follows that an ethylene molecule
has a planar structure.

Effects of electrostatic attractive forces due to bonding electrons on the carbon nuclei are much
stronger in the CC double bond than in CH single bonds. Thus the pulling forces by the bonding
electron densities are stronger along the double bond, and hence the HCH bond angle (the bond
angle between two CH bonds) should become a little smaller than 120◦ so that resultant forces
from electron densities in two CH bonds may be balanced with the opposite force cause by the
electron densities in the CC double bond; really the observed HCH angle is 117.5◦.

5.7 The three-center-two-electrton-bond and the hydrogen
bond

As studied in the earlier parts of this chapter, a pairing of electrons is not necessary to bind
two nuclei by attractive forces caused by electron densities located at middle regions between the
nuclei. It is important for formation of bonds how electron densities distribute in the bonding
regions between the nuclei. In this section, we will study bonds of three atoms formed by an
action of two electrons.

5.7.1 Three center orbital interactions

Let us study orbital interactions involved in a system of three atoms, A, B, and C, in which C
is the middle, using the simple Hückel molecular orbital metohd. An orbital of C χC can interact
with orbitals χA, χB of both ends of A and B, where resonance integrals are βAC 6= 0, βBC 6= 0.
Since the resonace integral for the long distance can be neglected, βAB = 0. Coulom integrals for
these atoms are denoted as αA, αB, αC. The secular equation to obtain molecular orbitals is given
as follows. ∣∣∣∣∣∣

αA − ε 0 βAC

0 αB − ε βBC

βAC βBC αC − ε

∣∣∣∣∣∣
= 0 (5.51)

This is just the same as the secular equation in Example 5.1 (the two to one orbital interactions)
in section 5.3. Thus, among the new orbitals produced by the interactions of three orbitals, the
most stable orbital φb becomes lower than the lower one of χA, χB, and the most unstable orbital
φa becomes higher than the higher one of χA, χB, as can be seen from Fig.5.18.
φb is a highly bonding orbital, which is composed of the same phase combinations of the

central atomic orbital with those of both ends in order to increase electron densities in the middle
regions between nuclei. φa is a highly antibonding orbital, which is made of the opposite phase
combinations of the central atomic orbital with those of both ends in order to exclude electron
densities out of the middle regions between the nuclei. On the other hand, the new orbital with
intermediate stability φm is formed in an intermidiate level between the levels of orbitals for both
ends. If orbitals of both ends degenerate, the level of the intermediate orbital is equal to the
degenerate levels. In the shape of φm, the higher one mixes with the central orbital in the same
phase, and the lower one mixes with the opposite phase. This leads to a weakly bonding character
in φm, as shown in Fig.5.18(a). It should be noted that, if orbitals of both ends are degenerate,
one of them might be in the same phase, but the other necessarily becomes in the opposite pahse.
By symmetry in the degenerate case, the contiribution from the the central atom is completely
vanishing in φm as shown in Fig.5.18(b), thus φm becomes almost nonbonding, because direct
interactions between both ends are negligibel from the distance.

When an electron is included in the bonding orbital φb of the three-center interactions, three
atoms can be connected with their neighbors. A pair of electrons in φb gives the more strong
bonding. Such types of bonds produced by a pair of electrons in the bonding orbital of the three
center are called the three-center-two-electron-bond. Now, let us stuy some examples.
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Figure 5.18: Three center orbital interactions

5.7.2 Linear three-center-two-electron-bonds

Putting fluorine F atoms on both sides of a xeone Xe atom, we can obtain a XeF2 molecule,
in which a pair of electrons in a 5p orbital of a Xe atom interact with unpaired electrons in 2p
orbitals of two F atoms aligned linearly with the central Xe atom.

:
..
F. : + :

..
Xe.. : + :

..
F. : −→ F−Xe− F

Relevant energy levels can be summarized in Fig.19.
Ionization energies of a Xe atom and a F atom are 12.1 eV and 17.4 eV, respectively. Thus,

Xe5p orbitals have higher energy levels than F2p orbitals. F2p orbitals do not interact each other
because of the long distance and shown in the left-hand side of Fig.5.19. An electron-pair in the
bonding molecular orbital φb is displaced nearer to the lower energy F2p, and a Xe atom and a F
atom are bonded by electron densities of an electron. The molecular orbital of the intermediate
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Figure 5.19: Three center two electron bonds in XeF2

stability φm can be considered as a nonbonding orbital, and a pair of electrons in this orbital have
no effects on the bonding and they are distributed on both F atoms, one by one in average. It
follows that XeF2 has linear three-center-two-electron-bonds with a bond-order of 1/2 for each
XF bond. Although these bonds are also denoted as the three-center-four-electron-bonds, they
are essentially the three-center-two-electron bonds.

Replacing a Xe atom by an iodide ion I− with the same electron configuration and also replacing
F atoms by other halogen atoms I or Cl, we can obtain linear molecular ions of I−3 and ICl−2 shown
in Fig.5.20. In XeF2, one electron-pair of a 5p orbital is used for a set of three-center-two-electron-
bonds. Here, another electron-pair of other 5p orbitals can also be used to produce another set of
three-center-two-electron-bonds with a different direction. These two sets of three-center-bonds
yield a square planar form of XeF4 (Fig.5.20). One more set of the electron-pair in Xe5p can
also be used to obtain XeF6. The observed form of XeF6 is slightly distroted from the expected
octahedral shape.

Figure 5.20: Various shapes of molecular structures

There are many other examples for the three-center-two-electron-bonds composed of an electron-
pair in a p orbital and a couple of unpaired electrons in halogen atoms. In a PCl5 molecule, each of
three sp 2 hybrid orbitals around the P atom has an unpaired electron and makes an electron-pair
bond with an unpaired electron in a Cl atom. It follows that an equilateral triangular form is
produced. Remaining two electrons among five valence electrons of the P atom are in a vertically
directed 3p orbitals as an electron-pair, which may be used to form a set of three-center -two-
electron-bonds with unpaired electrons in two Cl atoms. Thus a trigonal bipyramidal molecule
can be produced (Fig.5.20). Three covalent PCl bonds with a bond-order of unity in the triangle
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plane are denoted as equatorial bonds (experimental bond-length is 201.7 pm), which are stronger
and much shorter than two vertical PCl bonds denoted as axial bonds (experimental bond-length
is 212.4 pm), since these bonds are weak bonds with a bond-order of 1/2. Although the trigonal
bipyramidal structure of PCl5 can be explained by hybrid orbitals in Table 5.4, it becomes difficult
to explain differences in the bond lengths.

As similar examples including sp2 hybrid orbitals together with a vertical p orbital leading
to a set of three-center-two-electron-bonds, AB3 type molecules, such as ClF3 and BrF3 can be
produced. In these cases, the hybrid orbitals of the central halogen atom are composed of one
unpaired electrons and two electron-pairs, and the unpaired electron is able to form a covalent
bond with an unpaired electron in a F atom. Two electron-pairs in the hybrid orbitals become
unshared electron-pairs. A p orbital vertical to the plane of hybridization contains an electron-
pair, which can be used to produce a set of three-center-two-electron-bonds with two F atoms.
Thus a T shaped molecule shown in Fig.5.20 can be formed. The horizontal line of the T shape is
made of three-center bonds, and therefore the distances from the central atom in the horizontal
bonds are longer than the vertical bonds (covalent bonds). Unshared electron-pairs made of hybrid
orbitals are more tightly attracted with the central atom than the electron-pair in the covalent
bond, and it follows that the central atom is pulled upward to give a slightly deformed form like
an upward arrow ↑.

Example 5.4 The molecular structure of BF5 is a form of the following figure. Using a combi-
nation of covalent bonds and three-center-two-electron-bonds, explain the molecular structure of
this molecule.

(Solution) The outer-most shell electron configuration of a Br atom is (4s)2(4p)5. In a Br atom,

4px and 4py orbitals contain an electron-pair, and a pair of sp hybrid orbitals composed of 4s
and 4pz orbitals are formed. One of the sp hybrid orbitals (towards lower) contains an electron-
pair, and another one (towards upper) contains an unpaired electron. On the other hand, each
F atom has an unpaired electron in a p orbital. An unpaired electron of the sp hybrid orbital
in the z direction can form a covalent bond coupled with a F atom. 4px and 4py orbitals of the
Br atom can be used to produce three-center-two-electron-bonds with F atoms in both x and y
directions, and a square structure where four F atoms are placed on the corners is formed. The
BrF bond directed upward is a strong covalent bond with a shorter bond length (the observed
bond length is 171.8 pm), and BrF bonds in the horizontal plane are weak bonds due to three-
center-two-electron-bonds with a longer bond length (the observed bond length is 178.8 pm). The
Br atom is slightly displaced to the downward from the plane of the square, since the downward
directed electron-pair pulls the Br atom more strongly than the upward directed electron-pair in
the covalent bond does (the observed angle is ∠F(horizontal)BrF(vertical) = 85.1◦). Alternatively
an octahedral structure by sp3d2 hybridization can be assumed, but the short axial bond of the
square pyramid will become difficult to be explained.
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5.7.3 Bent three-center-two-electron-bonds

An interesting example includes bent three-center bonds with a H atom in the middle. Such a
bond can be seen in hydrated compounds of boron (generally called borane). Diborane B2H6 is
a typical example. There are two BHB bonds in a diborane molecule, and the geometrical shape
has a bridge structure as shown in Fig.5.12.

Figure 5.21: The bridge structure in diborane B2H6

For the B atoms sp3 hybridization can be assumed. Two of the four sp3 hybrid orbitals have
unpaired electrons, one has an electron-pair, and the remaining one is a vacant orbital with no
electron. Each of two unpaired electrons makes a covalent BH bond with a H atom, whose bond-
order is unity. In the bridge structure, an unpaired electron in a H atom in the middle interact with
an electron-pair in a B atom and also with a vacant orbital of another B atom to give energy levels
shown in Fig.5.22, since the ionization energy of a H atom is much larger than a B atom. Orbital
interactions yield bent orbitals as shown in the figure. Only the bonding orbital φb contains an
electron-pair. The B atoms and a middle H atom are bonded by three-center-two-electron-bonds
with a bond-order of 1/2. Depending on the difference in the bond-orders, bridge BH bonds have
longer bond lengths than the terminal BH bonds.

Figure 5.22: Molecular orbitals of diborane
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5.7.4 The hydrogen bond

When a H atom bonded to a strongly electronegative atom X makes a new bond with another
electronegative atom Y, such a bond is called the hydrogen bond. The hydrogen bond can also
be considered as a sort of the three-center-two-electron-bonds. In this case, the unpaired electron
energy level is rather high in comparison with valence orbitals of the electronegative atoms, and
energy levels in Fig.5.23 are obtained. In this figure negative atoms X and Y are shown in the
same side for convenience, though they are separated in a long distance and may be different
in their energies. The electron-pair in the bonding orbital φb connect three atoms via the H
atom. The XH bond becomes rather weaker than the case without the hydrogen bonding. When
the negativity of the Y atom is not strong enough, the electron-pair of the bonding φb orbital
concentrates its electron densities on the XH bond. The electron-pair of the φm orbital is almost
nonbonding, and it has no effect on formation or dissociation of the hydrogen bond.

Figure 5.23: The hydrogen bond

5.8 Electron energy levels and photoelectron spectra

As studied in section 4.3, the orbital energy εi can be related with the observed ionization
energy Ii via Koopmans formula.

Ii = −εi (5.52)

This relationship is approximate, and the exact numerical agreement cannot be expected. As far
as molecules with the singlet ground electronic states are concerned, observed ionization energies
have been found to give a satisfactory one-to-one correspondence with energy levels of molecular
orbitals. In this section, we will study relationships among photoelectron spectra, ionization
energies, and energy levels of molecular orbitals. A photoelectron spectrum of the hydrogen
molecule will also be studied in connection with the dissociation energies.

5.8.1 Photoelectron spectra and electron energy levels of molecular or-
bitals

The kinetic energy 1
2mv

2 of a photoelectron ejected from a substance irradiated by a photon of
hν with a frequency ν in the photoelectric effect can be given by the following formula.

1
2
mv2 = hν − Ii (5.53)

Here, Ii is the ionization energy of the substance. Using Koopmans’ formula we obtain

1
2
mv2 = hν + εi (5.54)

Thus, the kinetic energy of the photoelectron depends on the energy level of the molecular
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Figure 5.24: Relationships between photoelectron spectra and electron energy levels of molecular
orbitals

orbital from which the photoelectron is ejected. It follows that measurements of kinetic energy
distributions of photoelectrons caused by a given energy photons hν give a photoelectron spectrum,
which correspond to energy levels of molecular orbitals, as illustrated in Fig.5.24.

In general, a method measuring counts of electrons as functions of electron kinetic energies is
called the electron spectroscopy. An application of the electron spectroscopy to photoelectrons
ejected from sample substances by photoelectric effects is the photoelectron spectroscopy.

Fig.5.25 shows an example of an X-ray photoelectron spectrum (XPS) for a H2O molecule
measured with a photon source of the characteristic X-ray of Mg (Kα line: 1253.6 eV). In this
spectrum, there are clearly resolved five peaks corresponding to molecular orbitals. One of them
is a group of the slowest photoelectrons, which can be assigned to a molecular orbital mainly
composed of oxygen 1s orbital. The formula of eq.(5.54) gives a transformation of the kinetic
energy to the ionization energy, and thus we obtain I(O1s) = 539.9 eV. Other photoelectrons
have much larger energies with higher velocities, and they are slightly smaller than the photon
energy 1253.6 eV of the X-ray source, since the ionization energies of the corresponding valence
orbitals are much smaller than the ionization energy of the inner shell O1s level. Among the
valence photoelectrons, the slowest ones give a peak of a molecular orbital mainly composed of
O2s orbital, and the corresponding ionization energy is determined as I(O2s) = 32.2 eV. Further,
peaks with ionization energies of 18.5 eV, 14.7 eV, 12.6 eV can be assigned as the following
molecular orbitals of the H2O molecule.

18.5 eV OH bonding molecular orbital containing O2py atomic orbital.

14.7 eV HH bonding molecular orbital containing O2pz atomic orbital.

12.6 eV Nonbonding molecular orbital containing O2px atomic orbital.

Based on the above correspondence, we can confirm that ten electrons in a water molecule are
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Figure 5.25: X-ray photoelectron spectrum (XPS) of the H2O molecule measured with the Mg
Kα line

accommodated in the five molecular orbitals; in each orbital two electrons are contained as an
electron-pair.

Table 5.5 lists a comparison of ionization energies I from an X-ray photoelectron spectrum
with calculated orbital energies ε by an ab initio molecular orbital method. Although exact
agreement could not be obtained, absolute values of the orbital energies agree well with the
observed ionization energies within the error of 10%.

Table 5.5: Ionization energies I by XPS and orbital energies ε by an ab initio molecular orbital
method for H2O

Peak number I(eV) ε(eV) Molecular orbital character Main atomic orbital component
1 539.9 −558.3 Inner shell O1s
2 32.2 −36.8 Bonding O2s
3 18.5 −19.3 OH Bonding O2py
4 14.7 −15.2 HH bonding O2pz
5 12.6 −13.6 Nonbonding O2px

5.8.2 Photoelectron spectrum of the hydrogen molecule and the binding
energies

A photoelectron spectrum measured with the ultraviolet photons is called ultraviolet photoelec-
tron spectrum (UPS). For measurements of UPS, photons of 21.22 eV irradiated from a helium
discharge, which are due to 21P→ 11S transitions (from 2p orbital to 1s orbital), are used in
many cases. Since ultraviolet (UV) photons have much smaller energies in comparison with X-ray
photons, UV photons are not enough to ionize inner-shell electrons. However, electron kinetic en-
ergies are so small that more fine structures can be resolved in UPS. When a molecular vibration is
excited upon ionization, the kinetic energy of the photoelectron becomes smaller by an amount of
the energy required for the vibrational excitation, since this energy is further consumed from the
photon energy. In highly resolved photoelectron spectra, vibrational fine structures often appear
as many peaks. In Fig.5.26 a photoelectron spectrum of the hydrogen molecule is shown as an
example.

Peaks labeled by 0, 1, 2, · · · in the figure indicate the vibrational quantum v of the vibrational
states of produced ion H2

+. v = 0 corresponds to the vibrational ground state of H2
+, which is

the state of zero-point vibration of the hydrogen molecule-ion. Fig.5.26 shows the most strong
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Figure 5.26: Ultraviolet photoelectron spectrum of the H2 molecule

peak for v = 2. This is related to Franck-Condon principle, which is a well known rule for
electronic transitions in molecules. According to Franck-Condon principle, electronic transitions
can be considered to occur without nuclear motion. It follows that for potential energy curves
as in Fig.5.27 only vertical transitions are acceptable. In real cases, vertical transitions are most
likely to occur, and slightly displaced transitions can also appear though the probabilities are
small. Transitions requiring large nuclear displacements hardly occur.

Since the bonding force becomes weaker in the hydrogen molecule-ion, the equilibrium nuclear
distance is expected to become longer in the ion than the hydrogen molecule. The most outstand-
ing peak of v = 2 in the photoelectron spectrum in Fig.5.26 indicates that just on the vertical
line from the equilibrium position of H2 the potential curve of the ion crosses with the vibrational
level of v = 2. The ionization energy corresponding to the vertical transition is called the verti-
cal ionization energy in general. In the case of ionization of the hydrogen molecule, the vertical
ionization energy can be determined as 15.96 eV from Fig.5.26. The minimum ionization energy
of the hydrogen molecule on the other hand correspond to an ionization transition to the level of
v = 0 in the ion. Such a minimum ionization energy without vibrational excitation is called the
adiabatic ionization energy, which is estimated to be 15.43 eV in the case of H2.

What does the limit of v → ∞ in the vibrational excitation means? This corresponds to a
dissociated state where the bond is completely broken. In the photoelectron spectrum in Fig.5.26
this limit of v → ∞ corresponds to a dissociation of H2

+ into a H atom and a H+ ion. Thus, if
the position of v →∞ in the spectrum can be deduced, the dissociation energy of H2

+, D0(H2
+)

can be obtained from I(∞) − I(0). Noting that intervals between the peaks in the spectrum
decrease with the increase of v, a graphical plot of the intervals as functions of v gives a position
where the interval becomes vanishing. From this procedure we can obtain the right position
of the dissociation limit. The result becomes I(∞) = 18.08 eV. From this value, we obtain
D0(H2

+) = I(∞) − I(0) = 18.08 − 15.43 = 2.65 eV (see Table 5.3). Further, a correction of the
zero point energy leads to determination of the binding energy De (in the case of H2, it is the
bond energy). A careful study of peak intervals shows that the intervals almost linearly decrease.
From this line we can obtain the vibrational interval at v = 0, and one half of this can be a good
estimate of the zero-point energy. Thus we obtain

De(H2
+) = D0(H2

+) + 0.14 = 2.79 eV

From the spectrum in the figure, the vibrational energy quantum of H2
+ can be estimated

as about 0.28 eV. This corresponds to a wave number of ca. 2260 cm−1, which is considerably
smaller than the wavenumber of 4401 cm−1 for the molecular vibration in H2. This is because
in the ion a loss of a bonding electron decreases the bonding force. In general, a loss of bonding
electrons causing a reduction of the bonding force, which results in a reduction of the vibrational
wavenumber. When a loss of antibonding electrons oppositely causes a relative increase of the
bonding force to result in an increase of the vibrational wavenumber.
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Figure 5.27: Potential energy curves for H2 and H2
+

Example 5.5 From the photoelectrons spectrum of Fig.5.26 and the ionization energy of the
hydrogen atom (13.60 eV), obtain the dissociation energy of the hydrogen molecule.

(Solution) Let us denote the dissociation energy of the hydrogen molecue as D0(H2), the ionization
energy of the hydrogen atom as IH, an energy requied for ionization of the hydrogen molecule and
dissociation of H2

+ ion at the same time as I(∞). Then, we obtain the following relation.

D0(H2) + IH = I(∞)

Both sides of this equation correspond to the energy required to produce a disociated state of
the hydrogen molecule ion (a state dissociated into H and H+) starting from the vibrational
ground state (the zero-point vibrational state) of the hydrogen molecule. The left side is a path of
dissociation of a hydrogen molecule in the first step followed by ionization of one of two hydrogen
atoms in the second. The right side is another path of a direct transition into the dissociated ionic
state. The latter can be estimated from Fig.5.26 as

I(∞) = 18.08 eV

Then, using IH = 13.60 eV, we obtain

D0(H2) = I(∞)− IH = 18.08− 13.60 = 4.48 eV (see Table 5.3)
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Exercises

5.1 The secular equation of π orbitals for allyl CH2CHCH2 in the simple Hückel method is
given by ∣∣∣∣∣∣

α− ε β 0
β α− ε β
0 β α− ε

∣∣∣∣∣∣
= 0

Solve this equation, and obtain π orbital functions and their energy levels for allyl.

5.2 Obtain the bond-order P of N2
+, and compare the dissociation energy D0 and the bond-

length R of N2
+ with those of O2 and N2.

5.3 Explain qualitatively molecular orbitals and their energy levels of the HCl molecule using
the principle of orbital interactions.

5.4 Explain qualitatively molecular orbitals and their energy levels of the N2 molecule based on
the principle of orbital interactions and the Example 5.1 for the two to one orbital interactions.

5.5 Explain the molecular structure of propene CH3CH = CH2 using hybrid orbitals.
5.6 Explain the molecular structure of the TeCl4 molecule as shown in the following figure.

5.7 Using atomic orbitals (χj), 1s for the H atom，1s, 2s, 2px, 2py, 2pz for a F atom, molecular
orbitals(φi =

∑
j Cjiχj)of the HF molecule were calculated and listed in Table 5.6. The uppermost

row shows orbitals energies (εi eV) for molecular orbitals φi(i = 1, · · · , 6). In the lower rows,
coefficients Cji for atomic orbitals χj are listed. Phases (signs) for χj were chosen as follows;
phases of s orbitals were chosen to be positive at longer distances, and phases for p orbitals were
chosen to be positive at the positive direction on the respective coordinate axis commonly defined
for all atoms. Carefully study this table, and answer the following questions.

(1) Classify φ1 − φ6 into σ orbitals and π orbitals.
(2) Which one among χ1 − χ6 is F1s orbital?
(3) Which one among χ1 − χ6 is H1s orbital?
(4) Which is(are) vacant orbital(s) among φ1 − φ6?
(5) Which orbital(s) among φ1 − φ6 is(are) most responsible for the bonding force between the

H and F atoms.

Table 5.6:

φi φ1 φ2 φ3 φ4 φ5 φ6

εi(eV) −704.8 −40.03 −15.92 −12.63 −12.63 −17.12
χ1 C1i 0.995 −0.249 0.083 0 0 0.085
χ2 C2i 0.023 0.936 −0.435 0 0 −0.560
χ3 C3i 0 0 0 1 0 0
χ4 C4i 0 0 0 0 1 0
χ5 C5i −0.003 −0.090 −0.702 0 0 0.825
χ6 C6i −0.006 0.158 0.521 0 0 1.090
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5.8 Molecular orbitals (MO) of C2H4 were calculated as linear combinations of atomic orbitals
(AO), 1s for the H atom and 1s, 2s, 2px, 2py, 2pz for the C atom, and Table 5.7 lists the results
for nine MO from the lowest in energy. The uppermost row includes orbital energies of molecular
orbitals in the unit of eV. The lower rows list coefficients for AO (1 ∼ 14). As AO, Slater type
orbitals (STO) called STO3G were used in the calculations. Phases for s orbitals were chosen to be
positive in the longer distances, and phases for p orbitals were chosen to be positive at the positive
direction on the respective coordinate axis. Table 5.8 lists employed Cartesian coordinates for six
atoms in the unit of Å. Carefully study these results, answer the following questions. Note that
only one answer is not assumed, and find all possible answers.

(1) Which are hydrogen atomic orbitals among 1 ∼ 14 in Table 5.7 ?
(2) Which is carbon 2s atomic orbital among 1 ∼ 14 in Table 5.7 ?
(3) Which is the lowest unoccupied molecular orbitals (LUMO) among MO (1) ∼ (9) in Table

5.7 ?
(4) Which MO contribute to formation of the CCπ bond among MO (1) ∼ (9) in Table 5.7 ?
(5) Which MO contribute to formation of the CHσ bond among MO (1) ∼ (9) in Table 5.7 ?
(6) Which AO is 2px orbital for (1) atom in Table 5.8 ?
(6) Which AO is 1s orbital for (5) atom in Table 5.8 ?

Table 5.7:

エネルギー （1） （2） （3） （4） （5） （6） （7） （8） （9）
（eV） −299.9 −299.8 −26.6 −20.2 −16.4 −14.4 −12.6 −8.8 8.6

1 0.702 0.701 −0.178 −0.137 0.000 0.015 0.000 0.000 0.000
2 0.702 −0.701 −0.178 0.137 0.000 0.015 0.000 0.000 0.000
3 0.020 0.031 0.471 0.416 0.000 −0.026 0.000 0.000 0.000
4 0.020 −0.031 0.471 −0.416 0.000 −0.026 0.000 0.000 0.000
5 0.002 −0.004 −0.112 0.198 0.000 0.502 0.000 0.000 0.000
6 −0.002 −0.004 0.112 0.198 0.000 −0.502 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 −0.394 0.000 0.392 0.000 0.000
8 0.000 0.000 0.000 0.000 −0.394 0.000 −0.392 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.636 0.810

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.636 −0.810
11 −0.005 0.005 0.115 −0.224 −0.260 0.217 −0.348 0.000 0.000
12 −0.005 0.005 0.115 −0.224 0.260 0.217 0.348 0.000 0.000
13 −0.005 −0.005 0.115 0.224 −0.260 0.217 0.348 0.000 0.000
14 −0.005 −0.005 0.115 0.224 0.260 0.217 −0.348 0.000 0.000

Table 5.8:

X Y Z
（1） 1.338 0.0 0.0
（2） 0.0 0.0 0.0
（3） −0.564 0.929 0.0
（4） −0.564 −0.929 0.0
（5） 1.902 0.929 0.0
（6） 1.902 −0.929 0.0
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5.9 Next figures show electron density contour maps for molecular orbitals in H2O and H2S
molecules, which are most responsible for production of OH and SH bonds, respectively. Deduce
relative magnitude of ionization energies of three atoms, S, O, and H based on these figures.

5.10 A figure below shows an observed photoelectron spectrum of the nitrogen molecule N2

using ultraviolet photons of hν = 21.218 eV emitted from a helium discharge. Peaks of (1)-(3)
are associated with vibrational structures due to excitation of molecular vibrations of N2

+ ion. A
comparison of observed vibrational frequencies (wavenumbers) for ionic states with those for N2

(2345 cm−1) leads to the following conclusions; (1) is a weakly bonding orbital, (2) is a strongly
bonding orbital, and (3) is a weakly antibonding orbital. Assign the observed bands of (1)-(3) to
molecular orbitals 1πu, 3σg, 2σu, whose electron density maps are shown in Fig.4.5. Deduce the
order of bondlengths of N2

+ in the ionic states corresponding to (1)-(3) by comparing with the
bondlength for N2.


