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Chapter 3

Basic methods of approximation

Except for a very simple case such as a hydrogen atom, the fundamental equation of quantum
mechanics cannot be solved rigorously. It follows that approximation mathods should be used to
apply quantum mechanics to various problems. Methods to be used as well as the accuracies to
be required depend on the problems to be solved.

In this chapter, we will study most imortant and useful methods for approximation.

3.1 Perturbation theory

Even if an equation is difficult to solve directly, true solutions can be deduced from approximate
solutions of a slightly simplified equation, provided that the approximate solutions are known or
can be obtained easily. Such a technique, based on perturbation theory, is often used for calcula-
tions in quantum theory. Perturbation theory is applied to many problems for estimating changes
of energy levels and wave functions associated with additional variations due to interparticle in-
teraction as well as magnetic or electric fields.

3.1.1 Perturbation theory

In the equation of quantum mechanics, an additional term Ĥ ′ included in the Hamiltonian
operator Ĥ is called a perturbation. A system without perturbation is called the unperturbed
system. Assuming that solutions {Ei◦, Ψi

◦} of the eigen equation Ĥ0Ψ◦ = EΨ◦ for the unper-
turbed Hamiltonian Ĥ0 = Ĥ − Ĥ ′ are known, let us try to obtain solutions {En, Ψn} of the eigen
equation ĤΨ = EΨ for the Hamiltonian including the perturbation Ĥ = Ĥ0 + Ĥ ′.

First, we introduce a perturbation Ĥ ′ = λV̂ with a parameter λ indicating the magnitude of
the perturbation. Next, we expand Ψn in terms of solutions for the unperturbed system {Ψi

◦}.

Ψn =
∑

i

cinΨi
◦ (3.1)

Insertion of Ĥ = Ĥ0 + λV̂ into the eigen equation of Ĥ, followed by using the above expanded
equation for Ψn and the eigen equation of Ĥ0, then results in

∑

i

cin{Ei◦ + λV̂ }Ψi
◦ = En

∑

i

cinΨi
◦ (3.2)

Noting that an orthonormal system can be used in general for {Ψi
◦}, multiplication through from

the left by Ψj
◦∗ and integration yield the following equation.

cjnEj
◦ + λ

∑

i

cinVji = cjnEn (3.3)
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Vji is an integral for all coordinates represented by q, which is give by the following equation.

Vji =
∫

Ψj
◦∗V̂Ψi

◦dq (3.4)

This quantity Vji can be evaluated when {Ψi
◦} as well as the operator representing the perturba-

tion V̂ are given. λVji is denoted by Hji
′ and is called the ji-matrix element of the perturbation.

Hji
′ =

∫
Ψj
◦∗Ĥ ′Ψi

◦dq

=
∫

Ψj
◦∗λV̂Ψi

◦dq

= λVji (3.5)

This equation will be used for the formula of perturbation theory.
The equation (3.3) is an equation for obtaining energy eigen values En and {cin} determining

the wave functions Ψn. In order to solve this equation approximately, let us expand cin and En
into power series of λ.

cin = cin
◦ + λcin

′ + λ2cin
′′ + · · · (3.6)

En = En
◦ + λEn

′ + λ2En
′′ + · · · (3.7)

When En
◦ has no degeneracy, we obtain cin

◦ = δin( 1 for i = n, 0 for i 6= n ), since for λ → 0
Ψn → Ψn

◦ associated with En → En
◦. Therefore, the first terms in the expansion correspond

to the unperturbed system, and the second terms are corrections to the perturbation. Inserting
the above expansions eqs.(3.6)(3.7) into eq.(3.3), followed by arranging the lower order terms of
λ from the left, we obtain

λ(Vnn − En′) + λ2

(∑

i

Vnicin
′ − cnn′En′ − En′′

)
+ · · · = 0 (3.8)

By neglecting the second and the higher order terms, we obtain the following result for the first
order correction of the energy.

En
′ = Vnn (3.9)

It follows that the formula for the energy to the first order of the perturbation is given by

En ; En◦ + λVnn = En
◦ +H ′nn

=
∫

Ψn
◦∗{Ĥ0 + Ĥ ′}Ψn

◦dq

=
∫

Ψn
◦∗ĤΨn

◦dq (3.10)

The last equation indicates that the expectation value of the Hamiltonian operator including the
perturbation in terms of unperturbed wave functions Ψn

◦ yields the energy to the first order of
the perturbation.

By considering the second order contributions of λ, we obtain the following equation.

En
′′ =

∑

i (i 6=n)

Vnicin
′ (3.11)

From the first order terms of λ in eq.(3.3) with insertion of expanded expressions, cin′ (i 6= n) can
be written as follows.

cin
′ =

Vin
En
◦ − Ei◦ (i 6= n) (3.12)

Using this expression for eq.(3.11) we write

En
′′ =

∑

i (i 6=n)

VniVin
En
◦ − Ei◦ (3.13)



CHAPTER 3. BASIC METHODS OF APPROXIMATION 73

Using the above results, we obtain the following formulas for approximations of {En,Ψn} to the
second order of the perturbation.

En ; En◦ +Hnn
′ +

∑

i (i 6=n)

Hni
′Hin

′

En
◦ − Ei◦ (3.14)

Ψn ; Ψn
◦ +

∑

i (i 6=n)

(
Hin

′

En
◦ − Ei◦

)
Ψi
◦ (3.15)

Example 3.1 Verify that second-order perturbation corrections of the energy due to the lower
energy states are always positive, whereas those due to the higher energy states are always nega-
tive. It should be noted that Hni

′ = Hin
′∗, where ∗ denotes the complex conjugate (eq.(1.37)).

(Solution) The second-order perturbation corrections for the energy of the n-th state is expressed
by

En(2) =
∑

i (i 6=n)

Hni
′Hin

′

En
◦ − Ei◦

Using Hni
′ = Hin

′∗ and noting |Hin
′|2 > 0, we obtain

Hni
′Hin

′ = Hin
′∗Hin

′ = |Hin
′|2 > 0

This means that the numerators in the expression for En(2) are always positive. It follows that
contributions due to the lower energy states i(Ei◦ < En

◦) are always positive.

Hni
′Hin

′

En
◦ − Ei◦ > 0

Also, contributions due to the higher energy states i(Ei◦ > En
◦) are always negative.

Hni
′Hin

′

En
◦ − Ei◦ < 0

3.1.2 Perturbation theory for degenerate states

Now let us consider a system with f -fold degeneracy in the energy E◦. The degenerate states
are numbered from 1 to f , and energies of these degenerate states are denoted as E1

◦ = E2
◦ =

· · · = Ef
◦. For any other state a number n larger than f is assigned. For the energy levels of

n > f , {En,Ψn} are obtained by the method studied above. The energy levels from 1 to f should

be treated differently, noting that En → En
◦ and Ψn →

f∑
i=1

cin
◦Ψi
◦, associated with λ → 0.

Insertion of equations (3.6) and (3.7) into eq.(3.3), followed by neglecting higher order terms than
the second order of λ, results in the following a set of simultaneous equations.

f∑

i=1

(Vji − δjiEn′)cin◦ = 0 (3.16)

where j and n are arbitrary numbers from 1 to f .
According to linear algebra, the necessary and sufficient condition for the existence of nontrivial

solutions other than all {cin◦} to be vanishing is that the determinant of the matrix with ji element
corresponding to the inside of ( ) in eq.(3.16) should be zero.

∣∣∣∣∣∣∣∣∣∣∣

V11 − En′ V12 V13 · · · V1f

V21 V22 − En′ V23 · · · V2f

V31 V32 V33 − En′ · · · V3f

...
...

...
...

Vf1 Vf2 Vf3 · · · Vff − En′

∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.17)
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By solving this algebraic equation of the order f with respect to En′, f solutions of E1
′, E2

′,· · · , Ef ′
can be obtained. Thus, the energy levels shifted by the perturbation can be determined as follows.

En ; En◦ + λEn
′ (1 5 n 5 f) (3.18)

{cin◦} can also be obtained from solutions of the simultaneous equations of (3.16), provided that
a value of {En′} from eq.(3.17) is inserted in place of En′ in ( ). It should be noted that the
following equation for the normalization condition for {Ψn}.

f∑

i=1

|cin◦|2 = 1 (1 5 n 5 f) (3.19)

3.1.3 Modification of states by perturbation

Modification of energy levels due to additional actions can be observed as spectral changes for
transitions related to the levels. We will see some typical examples below.
[The Zeeman effect]

When magnetic fields are applied, doublet or triplet states may exhibit the splitting of degen-
erate energy levels. Phenomena of the splitting in spectral lines under magnetic fields are called
the Zeeman effect. The extent of the splitting of spectral lines depends on the strength of the
applied field. Fig.3.1 shows an example of the Zeeman effect on the 1D2–1P1 transition giving red
emission (6438.47 Å) from a cadmium atom. One line without a field splits into three lines under
the magnetic field.

Figure 3.1: An example of the Zeeman effect. The splitting of spectral terms under a magnetic
field

[The Stark effect]
Emission spectra from a hydrogen atom in a strong electric field give splitting of spectral lines.

The splitting of spectral lines under an electric field is called the Stark effect. The Stark effect is
observed for the following cases.
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(1) At least one of the energy levels related to the transition is degenerate, and the degeneracy is
lifted by the action of the electric field.

(2) Polar molecules with various orientation may have different energies under a strong electric
field, and transition energies may also be modified depending on the molecular orientation.

The latter type of the Stark effect does not require the degeneracy of the levels. The extent of
the splitting in the Stark effect depends on the strength of the applied electric field.
[The splitting of d levels]

Levels of d electrons in a metal atom or its ion (M) exhibit varieties of split patterns under the
field (ligand field or crystal field) of the surrounding ligands (L), depending on the symmetry and
the field strengths (Fig.3.2). Subtle changes in color for transition metal ions and their compounds
are related to the variations of split patterns of d levels.

Figure 3.2: The ligand field splitting of d levels. M: central metal, L: ligand.

[Spin-orbit coupling effects]
As studied in section 2.7, levels with the same set of L and S are degenerate, when the spin-orbit

coupling can be disregarded. If the spin-orbit coupling is significant, especially for atoms with
large atomic numbers to which relativistic effects cannot be neglected, the degeneracy is lifted to
give splitting of spectral lines. Multiplet states such as doublets and triplets can be observed as
split states even without external fields, and such a phenomenon is called the zero-field splitting
in contrast to the Zeeman effect.
[The transition probability and spectral selection rules]

In addition to the above examples, rapid variations such as actions due to electromagnetic waves
can also be treated as a perturbation. Since systems under actions of electromagnetic waves are
not in stationary states, theoretical treatments of unstationary states need to be made. Although
details will not be mentioned in this book, an extension of perturbation theory to unstationary
states makes it possible to evaluate the transition probabilities between stationary states. Looking
into the transition probabilities reveals that transitions do not necessarily occur between any pair
of states. There are certain rules which lead to either allowed transitions or forbidden transitions.

For example, the following selection rules are well known as conditions in order to observe light
absorption or emission by atoms.

∆L = 0 or ± 1 (The selection rule for orbital angular momenta)
∆J = 0 or ± 1 (The selection rule for total angular momenta) (3.20)
∆S = 0 (The selection rule for spin angular momenta)



CHAPTER 3. BASIC METHODS OF APPROXIMATION 76

Exceptionally, ∆L = 0 should be omitted between a pair of states with L = 0, and also ∆J =
0 should be omitted between a pair of states with J = 0. When transitions do not satisfy
the conditions in eq.(3.20), the corresponding spectral lines cannot be observed or appear with
extremely weak intensities, even if they could be observed. The last rule of ∆S = 0, forbidding
transitions between levels with different spin-multiplicity becomes to be less effective with the
increase of the atomic number, since the spin-orbit coupling becomes to be strong for heavy
atoms.

As can be seen from Fig.3.1, among transitions between split sublevels due to the difference of
the MJ values, transitions of ∆MJ = 0 or ±1 are only allowed.

3.2 The variation method

Besides the perturbation method studied in the previous section, another approach called the
variation method has been used for applying quantum mechanics to various problems. Especially
in recent years, development of modern computers has facilitated valuable usage of calculation
methods based on the variation method. In this section we will study the variation method. Now,
let us start with the variation principle.

3.2.1 The variation principle

A trial expectation value with an arbitrary function Φ is introduced by the following equation.

ε[Φ] =
∫

Φ∗ĤΦdq∫
Φ∗Φdq

. (3.21)

The value of ε[Φ] which depends on the choice of Φ is not smaller than the lowest eigen value E0

for the eigen equation ĤΨ = EΨ.

ε[Φ] = E0 (The equality holds only if ĤΦ = E0Φ) (3.22)

The equality of this formula holds only for a special case where ε[Φ] is an eigen function belonging
to E0. This formula of eq.(3.22) is called the variation principle.

[Proof]
Φ can be expanded in terms of eigen functions {Ψi} for Ĥ as Φ =

∑
i

ciΨi. Calculating ε[Φ]−E0

with the expansion of Φ and using ĤΨi = EiΨi as well as the normality of {Ψi}, we obtain

ε[Φ]− E0 =

∑
i

(Ei − E0)|ci|2
∫ |Ψi|2dq

∑
i

|ci|2
∫ |Ψi|2dq

= 0.

The last inequality is derived from the followings; E0 is the lowest eigen value, and an absolute
value cannot be negative. Since {Ψi} cannot be zero for all possible cases of the variables, the
equality requires ci = 0 for all {Ψi} having an energy Ei larger than E0. It follows that a nonzero
value for the coefficient ci in the expansion of Φ in terms of {Ψi} is allowed only if Ei = E0. Only
in this case, ĤΦ = E0Φ holds, and Φ becomes the eigen function belonging to the eigen value
E0. Conversely, if Φ is an eigen function of E0 satisfying ĤΦ = E0Φ, the numerator of eq.(3.21)
becomes

∫
Φ∗E0Φdq = E0

∫
Φ∗Φdq, which leads to ε[Φ] = E0. Therefore, the equality holds only

if ĤΦ = E0Φ, which is the case that Φ is the eigen function of the lowest eigen value E0.

The variation principle gives a guide to obtain the wave function and the eigen value of the
ground-state. For this purpose, Φ should be determined so that the value of ε[Φ] using Φ may
become the minimum. The resultant Φ is the eigen function of the lowest eigen value E0, the wave
function of the ground-state. It follows that this Φ yields ε[Φ] corresponding to the ground-state
energy value of E0.
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3.2.2 The variation method using a linear-combination approximation
(Ritz’s variation method)

It is difficult to find out Φ minimizing ε[Φ] on the basis of the above variation principle. For
various functions φ1, φ2, φ3, · · · , we need to calculate the respective value of ε[φi], and we should
find out a function giving the minimum. It is however impossible to test all functions. Even if
several combinations of E and Ψ satisfying ĤΨ = EΨ, the lowest eigen value among them is not
necessarily the true minimum eigen value. Therefore, a compromise of finite numbers of trials
giving up infinite repetitions would lead to unsuccessful results unless fortunate choices happened
to be made.

Now, let us try to test a wide range of functions more efficiently. A linear combination of n
functions φ1, φ2, φ3, · · · , φn

Φ = c1φ1 + c2φ2 + · · ·+ cnφn (3.23)

can be used to test infinite numbers of trial functions expressed by eq.(3.23), provided that ex-
pansion coefficients {ci} as adjustable variables are continuously varied. Although there is a
restriction due to the selection of {φi}, we can obtain the best result for testing all of arbitrary
linear combinations of {φi} as well as individual functions from φ1 to φn. In this way, the varia-
tion principle is used to determine a series of {ci} so that {ci} may lead to the minimum of ε[Φ].
This procedure is called the variation method using a linear-combination approximation (Ritz’s
variation method).

Insertion of eq.(3.23) into the definition of ε[Φ] leads to the following equation.

ε[Φ] =

∑
i

∑
j

ci
∗Hijcj

∑
i

∑
j

ci∗Sijcj
(3.24)

In this expression summations for i and j should be taken from 1 to n. Hij and Sij are elements
of n× n matrices and defined by the following integrals.

Hij =
∫
φi
∗Ĥφjdq (3.25)

Sij =
∫
φi
∗φjdq (3.26)

Sij is called an overlap integral between φi and φj .
Based on the variation principle, ε[Φ] should be minimized by changing {ci}, which are the

coefficients introduced in the definition of Φ. Since ci and c∗i are complex conjugates with each
other, we may take one of them as an independent variable. Hence, let us obtain the condition
for ∂ε/∂ci∗ = 0. For convenience, we rewrite eq.(3.24) as

ε[Φ]
∑

i

∑

j

ci
∗Sijcj =

∑

i

∑

j

ci
∗Hijcj (3.27)

Differentiation of the both sides of this equation with respect to ci∗ gives

∂ε

∂ci∗
∑

i

∑

j

ci
∗Sijcj + ε

∑

j

Sijcj =
∑

j

Hijcj (3.28)

Using the condition of ∂ε/∂ci∗ = 0, we obtain
∑

j

(Hij − εSij)cj = 0 (i = 1, 2, · · · , n) (3.29)

This expression is a set of simultaneous equations for {cj}, which is similar to eq.(3.16) in the
previous section.

If all coefficients from c1 to cn are zero, then they satisfy eq.(3.29). However, this set of solutions
leads to an identity of Φ = 0, which is physically of no meaning. In order to obtain nontrivial
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solutions other than all {cj} to be vanishing, the following determinant should be zero.
∣∣∣∣∣∣∣∣∣∣∣∣

H11 − εS11 H12 − εS12 · · · H1n − εS1n

H21 − εS21 H22 − εS22 · · · H2n − εS2n

...
...

...
...

...
...

Hn1 − εSn1 Hn2 − εSn2 · · · Hnn − εSnn

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.30)

The ij elements Aij of this determinant is derived from the coefficients of (Hij − εSij) = Aij in
the simultaneous equations (3.29). Eq.(3.30) is an algebraic equation of the order n for ε, and
it is called the secular equation. The secular equation is simply expression as |Hij − εSij | = 0,
in which only the ij element is written between a pair of vertical bars. ε1, ε2, · · · , εn(εi 5 εi+1)
are n solutions of this equation and approximate energy eigen values. The lowest eigen value
ε1 is the best approximation of the true ground-state energy within all possible ranges of the
linear combination for Φ in eq.(3.23). In comparison with true eigen values from the lower ones,
E1, E2, E3, · · · , the eigen values obtained by Ritz’s variation method satisfy the following relation.

Ek 5 εk (k = 1, 2, · · · , n) (3.31)

Therefore, εk (k = 2) is an approximate energy value for the k-th excited state.
Wave functions {Φk} corresponding to the approximate energy eigen values {εk} can be de-

termined by insertion of εk into the simultaneous equations (3.29), followed by obtaining {cj}.
It should be noted here that the normalization condition leads to the following equation to be
satisfied for {cj}. ∫

Φk∗Φkdq =
∑

i

∑

j

ci
∗cjSij = 1 (3.32)

Example 3.2 Calculate approximate energies and wave functions by applying Ritz’ variation
method to Φ = c1φ1 + c2φ2, provided that H11 = −12 eV, H22 = −6 eV, H12 = H21 =
−4 eV, S11 = S22 = 1, S12 = S21 = 0.

(Solution) Using the given conditions, the secular equation is expressed by
∣∣∣∣
−12− ε −4
−4 −6− ε

∣∣∣∣ = ε2 + 18ε+ 56 = (ε+ 14)(ε+ 4) = 0

The lower solution gives the ground-state energy of ε1 = −14 eV, and the higher one corresponds
to the excited-state energy of ε2 = −4 eV.

The wave function Φ can be obtained in the following way. Applying the given conditions to
the normalization condition of eq.(3.32),

|c1|2 + |c2|2 = 1 (1)

Simultaneous equations (3.29) for coefficients c1, c2 give

(H11 − ε)c1 +H12c2 = 0 (2)

Insertion of values for H11,H12 and ε1 into this equation (2) leads to

(−12 + 14)c1 + (−4)c2 = 0

This yields c1 = 2c2, and then eq.(1) gives c1 = 2/
√

5, c2 = 1/
√

5. Thus, we obtain the ground-
state wave function.

Φ1 =
1√
5

(2φ1 + φ2)

Next, insertion of ε2 into ε in eq.(2) leads to

(−12 + 4)c1 + (−4)c2 = 0

This yields 2c1 = −c2, and then eq.(1) gives c1 = 1/
√

5, c2 = −2/
√

5. Thus we obtain the
excited-state wave function.

Φ2 =
1√
5

(φ1 − 2φ2)
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3.3 The SCF method

As studied in section 2.4, wave functions for many electrons systems can be constructed with
orbital functions. The problem is how to determine orbital function for many electron systems.
In this section, we study a fundamental approach obtaining orbital functions on the basis of the
variation method.

The Hamiltonian operator for an n electron system is given by the following expression.

Ĥ =
n∑

i=1

ĥ(i) +
n∑

i>j

ĝ(i, j) (3.33)

Here, ĥ(i) and ĝ(i, j) are one and two electron operators, respectively. The indices i and j refer to
the respective electrons. A comparison of this equation with the formula (2.31) for many electron
system in section 2.3 leads to the following expressions for the above operators.

ĥ(i) = − ~
2

2m
∆i − Ze2

4πε0ri
(3.34)

ĝ(i, j) =
e2

4πε0rij
(3.35)

Orthonormal orbital functions including spins {ψi} can be determined from the following si-
multaneous equations derived from the minimization conditions for the expectation value of Ĥ by
a determinant wave function Ψ = |ψ1ψ2 · · ·ψn| composed of the orbital functions.

[
ĥ(i) +

∑

k

∫
ĝ(i, j)|ψk(j)|2dqj

]
ψi(i)−

∑

k

[∫
ĝ(i, j)ψk∗(j)ψi(j)dqj

]
ψk(i)

= εiψi(i) (i = 1, 2, · · · , n) (3.36)

The summation should be taken from 1 to n except for k = i. Eq.(3.36) is called the Hartree-Fock
equation, and solutions of this equation yield the orbital functions {ψi} and the orbital energies
{εi}.

A sophisticated approach needs to be used for solving eq.(3.36). First, we assume that an
approximate set of solutions (the 0-th approximation) for {ψi} is given. Replacement of ψk in the
left of eq.(3.36) by the 0-th approximation leads to a simple equation to be solved as follows.

F̂ψ = εψ (3.37)

Although the approximate solutions of {ψi} are included in the operator F̂ , {ψi} to be determined
are not included. It follows that eq.(3.37) can be solved as a normal eigen value equation. Although
the first solutions so obtained for {ψi} and {εi}, are approximate ones, they are expected to be
better than those of the initial guess. Next, we estimate the operator F̂ with the first solutions,
and then we solve eq.(3.37) again to obtain the second solutions. In such procedures, we improve
the solutions iteratively until discrepancies between the results and the assumptions will become
negligibly small. It is called self-consistent when the assumed ψ as an approximation becomes
consistent with the obtained ψ as a solution. In the convergent solutions, interactions between
electrons included in F̂ are the self-consistent field. Such a procedure obtaining solutions in an
iterative way is the SCF method, and the solutions are called SCF solutions. Orbital functions
determined by the SCF method are called SCF orbitals.

Construction of the determinant wave function with the lower-energy SCF orbitals, followed by
calculation of the expectation value of the Hamiltonian operator of eq.(3.33), yields an approx-
imation of the ground-state energy, which is called the SCF energy. The SCF energy ESCF is
expressed in terms of some integrals by the following equation.

ESCF =
∑

i

(h)i +
1
2

∑

i,j

{(J)ij − (K)ij} (3.38)
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The summation should be taken for all occupied orbitals. The integrals for the SCF orbitals
including spins are defined as follows.

(h)i =
∫
ψi
∗ĥ(i)ψidq

(J)ij =
∫
ψi
∗(1)ψj∗(2)ĝ(1, 2)ψi(1)ψj(2)dq1dq2

(K)ij =
∫
ψi
∗(1)ψj∗(2)ĝ(1, 2)ψj(1)ψi(2)dq1dq2

The SCF energy is expressed in terms of individual orbital energies {εi} as follows.

ESCF =
∑

i

εi − 1
2

∑

i,j

{(J)ij − (K)ij} (3.39)

This indicates that the SCF energy is not equal to the summation of the orbital energies. The
additional term is identical with the second term in eq.(3.38) except for the opposite signs. This
term is due to the interactions between electrons. The sum of orbital energies includes duplicated
contributions of interactions between electrons, since an interaction between a particular couple
of two electrons appears in both of the respective orbital energies of the pair of the electrons. It
follows that in eq.(3.39) the interactions between electrons multiplied by -1 are added to the sum
of the orbital energies. If the interactions between electrons can be neglected, the total energy
becomes the sum of individual orbital energies, and the situation is the same as the independent
particle model studied in section2.3.

A comparison of the SCF energy with the ground-state energy EG without including relativistic
effects such as the spin-orbit coupling leads to the following inequality.

EG 5 ESCF

The equality is only for one-electron systems such as hydrogenic atoms. The equality does not hold
for many electron systems. The difference of ESCF −EG = ECORR for many electron systems are
always positive. Its magnitude ECORRis called the electron correlation energy. Such a discrepancy
is due to the construction of the many-electron wave function from orbitals for independent motion
of electrons, which excludes effects of the electron correlation. The variation method as well as
the perturbation method may be used to consider electron correlation effects (see section 4.3). In
conclusion of this chapter, characteristic features for the perturbation method and the variation
method are listed in Table 3.1.

Table 3.1: Characteristic features for the perturbation method and the variation method

Perturbation method Variation method
Approach True solutions are guessed as

series expansions with unper-
turbed solutions, if they are
known.

Trial wave functions with ad-
justable parameters are as-
sumed and optimized to min-
imize the expectation value.

Feature If the perturbation is weak,
even the lower order expan-
sions give successful results.
When the perturbation is
strong, slow convergence
makes calculations of higher
order terms formidable.

Trial functions similar to the
true solution give excellent re-
sults. If the adjustable range of
trail functions is too large, cal-
culations become formidable.
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Exercises

3.1 Based on the variation principle, verify that the energy up to the first order of a perturbation
E(1) is higher than the true ground-state energy EG.

3.2 For a system of two levels, verify that the higher state goes up and that the lower state
comes down, by considering energy corrections due to the second order perturbation.

3.3 Applying Ritz’s variation method to Φ = c1φ1 + c2φ2, obtain approximate solutions for the
energies and the wave functions, using H11 = H22 = −6 eV, H12 = H21 = −3 eV, S11 = S22 =
1, S12 = S21 = 0.


