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Chapter 1

Quantum Theory and The Wave
Equation

In the last year of the nineteenth century, some experimental results concerned with thermal
radiation were found to be incompatible with the theory of physics in those years. In order to
overcome this difficulty, a new theory known as quantum theory was developed, and in the nineteen
twenties, quantum mechanics was founded. The quantum theory was then applied to various
problems in chemistry such as chemical bonding and chemical reactions, and today quantum
chemistry has become an important field of chemistry.

In this chapter, we shall see the scope of quantum chemistry at first, and then interactions
between charged particles as well as wave phenomena will be introduced as preliminary background
of the theory. After learning a short history of the quantum theory, we shall study foundations of
quantum mechanics.

1.1 What is quantum chemistry?

Quantum chemistry is an application of quantum mechanics to chemistry. Quantum chemistry
enables us to understand and predict structures, properties, and reaction mechanisms in various
substances. For these purposes, mathematical techniques are essential. Since electronic comput-
ers had not yet been created in the early days when quantum mechanics was born, the scope of
chemical phenomena to which quantum chemistry can be applied in practice, was considerably
limited to a very small range of problems. However, very rapid progress of modern computing
instruments in recent years has prompted a remarkable extension of the scope of quantum chem-
istry. In this part, we shall see what can be clarified and predicted after having studied quantum
chemistry.

(1) Origin of characteristics of chemical elements can be elucidated. (cf.2. 5, 2. 6, 6. 1, 6. 2)
There are several groups of elements with similar properties: alkali metals easily lose an electron

(highly electropositive), halogens tend to accept an electron (highly electronegative), and noble
gases are inert. Although periodic characteristics of elements are to be studied in middle or high
school, how these properties of elements originate from natural laws cannot be explained at the
level of school chemistry. There is an explanation that noble gases are inert because of their stable
electron configurations. Why the electron configurations of noble gases are particularly stable? It
was discovered in 1962 that even a noble gas can react to yield its compounds, though the fact
is usually disregarded in school chemistry. Why can an ”inert” noble gas undergo reactions? Are
there any conditions for its reactivity? The origin of characteristic properties of chemical elements
including the mysterious reactivity of noble gases can be elucidated with quantum mechanics.

(2) Molecular structures can be predicted. (cf. 4. 4, 5. 4–5. 7)
In every textbook for school chemistry, a chart of molecular structures such as fig:1.1 is shown.

These structures were of course determined by experimental studies. Skeletal structures, such as
a tetrahedron for methane, an isosceles triangle for water, and a hexagon with six equivalent CH
bonds extending externally for benzene, are all very interesting. Why is methane not a cross?
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Why is water not linear? Why in benzene do all CC bonds as well as all CH bonds have the same
bond lengths? Such questions can be answered by quantum chemistry. Bond lengths and angles
can be obtained by quantum chemical calculations.

Figure 1.1: Skeletal structures of molecules. Numerical figures are bond lengths in nm and bond
angles in degree.

(3) Molecular spectra can be predicted. (cf. 4. 4)
We can see vivid pictures demonstrating characteristic colors of various materials in textbooks
for school chemistry. Colorful pictures on TV also are chemical products, controlled electrically.
Colors of matter are inherently determined by spectra of light, i.e. by electromagnetic waves.
The mechanisms by which colors are produced in solutions and solids containing molecules and
ions can be understood by quantum chemistry. The wavelengths of infrared and microwave radi-
ation that are absorbed or emitted by water and carbon monoxide molecules can be calculated by
quantum chemical theories. By comparing observed spectra in interstellar space with quantum
chemical calculations, molecules producing those spectra have been identified.

(4) Heats of reaction can be predicted (cf. 4. 4)
The heat of a chemical reaction need not necessarily be deduced from some data on reactions in-
cluding related compounds and Hess’s Law of Constant Heat Summation. Without experimental
data, heats of chemical reactions can be obtained by quantum chemical calculations.

(5) What will be produced and how the reactions will proceed can be predicted (cf. 6. 3, 6. 4)
Vinyl compounds having a double bond undergo addition reactions or addition polymerization, as
can be seen in a textbook for school chemistry. Polyethylene and polybutadiene are polymerized
products of a single monomer unit of ethylene and butadiene, respectively. In 1928 it was dis-
covered that a mixture of ethylene and butadiene leads to a unique production of a cyclohexene
ring (Reaction Scheme I). Such a reaction is very useful to obtain a six-membered ring of carbon
atoms, since the reaction easily occurs to yield the desired product selectively without useless con-
sumption of the reactants. Why do ethylene molecules not easily react with each other to produce
a four-membered cyclobutane ring (Reaction scheme Ib)? The explanation can be elucidated by
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quantum chemical theory.

(End-atoms are H atoms)

Moreover, two types of ring products (A) and (B) in the Reaction scheme II can be assumed to
be produced from ethylene and butadiene derivatives in which a hydrogen atom is substituted by
a formyl group (-CHO) and a methoxy group (-OCH3), respectively. However, only (A) can be
produced in the real reaction. If several products are formed, we need to make efforts to separate
them with a considerable loss of reactants. Therefore, a reaction producing only one product is
very useful in chemical synthesis. Quantum chemistry can provide theoretical designs of reaction
schemes leading to selective production of compounds.

(CH bonds are omitted)

The above examples are only part of the full range of modern applications of quantum chemistry.
Recent developments in computing instruments have rapidly extended the applicable range of
quantum chemistry. Mathematical and computing methods for quantum chemistry have been
developed in various levels, from primitive and qualitative methods to the most sophisticated and
very quantitative methods. In the 21st century, the applicable range of quantum chemistry will
be continuously expanded to cover uncultivated areas.
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1.2 Charged particles constituting matter and the Coulomb
force

The elements of all matter are nuclei and electrons with positive and negative electric charges,
respectively. Combinations and interactions of these particles give various structures, properties,
and reactions of matter. First of all, it is important to understand fundamental aspects of electric
interactions. An atom is composed of a nucleus and some electrons; the positive electric charge
of the nucleus and the number of electrons surrounding the nucleus are both equal to the atomic
number (Z). When an atom loses or gains an electron, it becomes a positive or negative ion,
respectively. The tendency of an atom to become an ion by losing or gaining an electron is
different depending on the kind of the chemical element classified by the atomic number. This
tendency is closely related to the chemical properties of the element.

Example 1.1 Calculate e, the electric charge of an electron, using Faraday’s constant of
96485 C mol−1 and Avogadro’s constant of 6.022 × 1023 mol−1. (1 C is the electric charge that
is carried by an electric current of 1 A for 1 s)

(Solution) The electric charge of 1 mole of electrons is 96485 C mol−1 from Faraday’s constant,
and the number of particles per 1 mol is from Avogadro’s constant. Using these numbers, the
electric charge of an electron is calculated as

e =
96485 C mol−1

6.022× 1023 mol−1
= 1.602× 10−19 C

In general, matter losing an electron carries a positive charge, and matter gaining an electron
carries a negative charge. Matter carrying electric charges exert forces one another along the
directions connecting them. A pair of charges with the same sign repel each other, and charges with
opposite signs attract mutually. The force F exerted on the charges has a magnitude proportional
to the product of the charges of Q1 and Q2 and inversely proportional to the square of the distance
r. This is called Coulomb’s law and expressed as

F =
Q1 ·Q2

4πε0r2
(1.1)

Here, ε0 is a fundamental physical constant called permittivity of vacuum (cf. Appendix 1).
Although Coulomb’s law was discovered by observing forces between charged bodies, this law

can also be applied to very small particles such as electrons and nuclei. Therefore, Coulomb’s law
is deeply related to atomic properties of both physical (e.g. color of absorbed and emitted light)
and chemical (tendency of ionization and reactivity) types.

Particles with masses exert attractive forces known as universal gravitation toward one another.
However, for particles with small masses such as electrons and molecular ions, gravitational forces
are negligibly small in comparison with those given by Coulomb’s law (Coulomb forces).

Example 1.2 When a unit negative charge is placed at the midpoint between a pair of unit
positive charges separated by a distance R, which force acting on a positive charge is the larger,
the force exerted by the negative charge or the force caused by the other positive charge? Find
the direction to which the positive charge tends to move.
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(Solution) A positive charge undergoes an attractive force of F− = −1/4πε0(R/2)2 by the negative
charge placed at the distance of R/2 and a repulsive force of F+ = 1/4πε0R

2 by the other positive
charge at the distance R. Since the former is 4 times larger than the latter, each positive charge
tends to move toward the other positive charge. (By the action of the intervening negative charge,
the positive charges tend to bind one to the other. This is related to the phenomenon that nuclei
with positive charges can be held together under the action of electrons.)

When a charged particle is placed at a position between a pair of metallic plates with a certain
electric potential difference (voltage), then a positive charge undergoes a force toward the plate
of lower voltage and a negative charge toward the higher one. The magnitude of the force is
proportional to the absolute value of the electric charge. Thus, under the same potential difference,
the force acting on an electron and that on a monovalent positive ion have the same magnitude,
though the directions are opposite.

When an electron in a resting state is accelerated from a metal plate of a low voltage to another
metal plate of higher voltage with an electric potential difference of 1 volt (V), the kinetic energy
of the electron becomes 1 electron volt (eV). The work to carry a positive electric charge of 1
Coulomb (C) up to a position where the voltage is 1 V higher than the starting point is 1 Joule
(J), 1 eV = 1.602× 10−19 J. A Brown tube for a TV set (cathode ray tube or CRT) is equipped
with an electron gun (cathode) from which electrons are emitted and accelerated by a potential
difference of ca. 10 kV. Such a beam of electrons is then focused onto the fluorescent screen by the
action of an electron lens made of magnetic deflection coils and displays a spot of light emission.

Example 1.3 Calculate the velocity of an electron with a kinetic energy of 1 eV.

(Solution) The kinetic energy of an electron (mass of an electron is m) is expressed as 1
2mv

2,
and 1 eV = 1.602 × 10−19 J. Thus, 1

2mv
2 = 1.602 × 10−19 J. By using the mass of electron

m = 9.109× 10−31 kg, the velocity of the electron v is obtained as

v =
(

2× 1.602× 10−19

9.109× 10−31

)1/2

= 5.93× 105 m s−1

As can be seen from the above Example 1, the velocity of an electron of 1 eV is about 600 kms−1.
Velocities of ions, with a kinetic energy of 1 eV are considerably slower in comparison with the
velocity of an electron. This is because the mass of an ion M is considerably larger than the mass
of an electron m. Even for the lightest ion, i.e. a hydrogen ion (proton), M is ca. 1836 times larger
than m. Hence, the velocity of a proton with a kinetic energy of 1 eV is about 1.38× 104 m s−1.
Kinetic energy analyses (Velocity analyses) of electrons or ions ejected from sample materials are
useful for studying their structures and masses.

1.3 Waves and oscillations

A basic equation for waves was utilized to discover the fundamental equation for quantum
mechanics, which became the basis of quantum chemistry. Let us first consider basic properties
of waves.

A typical wave depending on the position x and time t is expressed as the following sine wave.

Ψ(x, t) = A sin 2π
(
x

λ
− t

T

)
(1.2)

Here, Ψ is a quantity indicating the displacement at the position x and time t, A is the amplitude,
T is the frequency, λ is the wave length, and 2π (x/λ− t/T ) is the phase of the wave. Time-
development of this wave (Fig.2a) can be understood easily by considering the behavior at a given
point, for example at x = 0. This wave oscillates in the range between ±A, and its frequency per
second is expressed as

ν =
1
T

(1.3)
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Figure 1.2: Sine waves

The unit for the frequency is s−1 or Hz (Hertz). The motion of the wave in the coordinate space
at a given time (for example at t = 0) is shown in Fig.2b, in which periodic behavior of the wave
can be seen with an interval of the wavelength λ. Considering a peak of the wave which should
satisfy Ψ = A in eq.(2), we obtain

2π
(
x

λ
− t

T

)
=
π

2
Thus, the value for x with this condition is given by

x(t) = λ

(
t

T
+

1
4

)

The x-coordinate for the peak of the wave increases as function of time t as can be seen in Fig.2c.
Therefore, this wave proceeds toward the positive direction along the x-axis. Since its velocity v
is expressed as v = dx/dt, we obtain

v =
λ

T
(1.4)

Using eq.(3), we obtain
v = νλ (1.5)
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This is the fundamental equation for a wave. A wave with a wavelength λ oscillating ν times
per second reaches a position in a distance of νλ, which is the velocity of this wave. As for
electromagnetic waves or light, the velocity v becomes the light velocity c, and we obtain

c = νλ (1.6)

This is the fundamental equation of electromagnetic waves.
A mathematical relation for a complex number with an angle θ,

exp(iθ) = cos θ + i sin θ (1.7)

can be used to extend a wave with a frequency ν and wavelength λ to a wave expressed by an
exponential function with a complex value. Using eq.7 as well as θ = 2π(x/λ−t/T ) = 2π(x/λ−νt),
we obtain an equation for Ψ = A exp(iθ).

Ψ(x, t) = A exp 2πi
(x
λ
− νt

)
(1.8)

This equation will be used later for introducing the fundamental equation of quantum mechanics.

Example 1.4 A carbon dioxide molecule absorbs infrared radiation with a wave number of
667 cm−1 (wave number is defined as the number of waves per unit length of 1 cm). Calculate the
wavelength and the frequency of this wave.

(Solution) Using relations λσ = 1 and λν = c among wave number σ, wavelength λ, frequency

Figure 1.3: Classification of electromagnetic waves
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ν, and light velocity c, we obtain λ = 1/σ and ν = cσ. In the case of infrared radiation1 with a
wave number of 667 cm−1,

λ =
1

667 cm−1
= 1.50× 10−3 cm = 15.0µm = 1.50× 10−5 m

ν = (3.00× 108 m s−1)× (66700 m−1) = 2.00× 1013 s−1

1.4 Quantum theory of energy

The concept of matter being composed of small elements has been established by the discovery
of atoms, electrons, and nuclei. Further studies on thermal radiation and photoelectric effects
have revealed the indivisible minimum unit of energy called an energy quantum.

The phenomenon of light (electromagnetic wave) emission from matter heated to a high temper-
ature, such as iron in a furnace or a heater in an electric stove, is called thermal radiation. Thermal
radiation from a completely black body is an ideal case that does not include reflection and is
called black-body-radiation. Spectroscopic measurements of intensities of emitted electromagnetic
waves as functions of wavelength λ or frequency ν give characteristic features of the spectra. The
spectra for black-body-radiation shows a characteristic shape at a given temperature, and their
features change depending on the temperature, as can be seen in Fig.1.4.

Figure 1.4: Spectra of black body radiation

The wavelength at the maximum λmax shifts toward shorter wavelengths upon increasing abso-
lute temperature T . The product of λmax and T becomes approximately constant.

λmaxT = constant (1.9)

This is Wien’s displacement law.
In the several years starting from the end of the nineteenth century to the beginning of the

twentieth century, no theoretical explanations of thermal radiation were successful, though some
trials were made on the basis of physical laws known before. Thus, physicists in those years
became deeply perplexed. In 1900, Planck successfully introduced the new concept of an energy
quantum, which yielded a satisfactory formula for thermal radiation. Planck’s theory includes an
elementary unit of energy proportional to the frequency ν for every oscillator, and the allowed

1Typical wavelengths for infrared radiation are 1 ∼ 100µm (1µm = 10−6m). Relationship between wavelengths
or wave numbers and photon energies can be seen in Fig.1.3.
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energy of an oscillator is assumed to be an integer multiple of the frequency ν, nhν. This minimum
unit of energy hν is called the energy quantum, and h is called Planck constant. The experimental
value of h is h = 6.6262× 10−34 Js.

Example 1.5 The maximum wavelength of thermal radiation from a crystalline plate of gallium
arsenide (GaAs) heated in a vacuum chamber for production of semiconductor was 5.0µm at
308 ◦C. Calculate the maximum wavelength when the plate is heated at 400 ◦C.

(Solution) Wien’s displacement law gives a value of the product of the maximum wavelength λmax

and the absolute temperature T as

λmaxT = (5.0µm)(308 + 273 K) = 2905µm K

Thus, we obtain the maximum wavelength λmax at 400 ◦C as follows.

λmax =
2905µm K

400 + 273 K
= 4.3µm = 4.3× 10−6 m

The concept of the energy quantum was applied to the explanation of the photoelectric effect
by Einstein, and the minimum unit of energy hν for a light of frequency ν was then called a light
quantum or a photon.

The photoelectric effect is a phenomenon where an electron is ejected from matter illuminated
by light, which is associated with consumption of light energy. The ejected electron is called a
photoelectron. Photoelectric currents of a photoelectric tube produced by irradiating the surface
of the cathode were extensively studied by Lenard (Fig.1.5), and interesting features were revealed
for the photoelectric effects.

Figure 1.5: The relationship between the photocurrent and the retarding voltage in the photo-
electric effect

(1) There is a threshold wavelength λt. Regardless of how strong the light intensity, when
the wavelength is longer than the threshold value, no photoelectric effect can be observed
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(Fig.1.6a-b). Threshold wavelengths(λt orλt′) are different depending on the materials of
the cathode (Fig.1.6a), andλt for an alkali metal is at a longer wavelength in comparison
with other materials.

(2) A photoelectric current is observed at the instant just after light is introduced, even if the
intensity of the light is very weak (Fig.1.6c). The photoelectric current, i, is proportional to
the light intensity, I (Fig.1.6b).

(3) When a stopping voltage V is applied between the anode and the cathode so that the
photoelectron ejected from the cathode may be repelled before reaching the anode, the
photoelectric current becomes vanishing at a certain voltage of Vmax (maximum stopping
voltage). Vmax corresponds to the maximum value of the kinetic energies of the photoelec-
trons, {(1/2)mv2}max = Vmax. The maximum stopping voltage does not change even if
the intensity of the light introduced onto the cathode is increased. The maximum stopping
voltage depends on the kind of material, and the shorter the wavelength (or the larger the
frequency), the larger it becomes (Fig.1.6d).

Figure 1.6: Observed features of the photoelectric effect

These experimental features of the photoelectric effect could not be explained in terms of naive
ideas that electrons in matter would be ejected under the disturbing actions of electromagnetic
waves. For example, the general tendency for the action of electromagnetic waves to increase
with the increase of their intensity clearly contradicts feature (1). Since low intensity light has
insufficient energy to kick out an electron, a certain time would be required for ejection of a
photoelectron after irradiation, and hence this is not consistent with feature (2). On the other
hand, intense light would seem to increase the velocity of the photoelectron in contradiction to
feature (3).

In 1905 Einstein showed that the photoelectric effect can be explained consistently in terms of
the law of conservation of energy, as a photon energy of hν is consumed to generate a photoelectron.
Since a certain amount of work W is required for extracting an electron from matter, the energy of
an electron in matter Ein (Ein < 0) should be −W , provided that the energy of a resting electron
free from external forces is set to be 0.

Ein = −W (1.10)
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The magnitude of W (W > 0) depends on the kind of the substance. W is called a work function
for a metal, and it corresponds to ionization energy or ionization potential when the substance
ejecting an electron is an atom or a molecule. The kinetic energy of an ejected photoelectron with
a mass m and a velocity v is expressed as 1

2mv
2. When an electron in the state of Ein = −W

is given a photon energy hν to be ejected as an photoelectron, the law of conservation of energy
leads to the following equation.

hν −W =
1
2
mv2 (1.11)

The left-hand side of this equation is the sum of energies for a photon and an electron, and the
right side corresponds to the state of an outgoing photoelectron after the consumption of a photon.
The kinetic energy of the photoelectron in the right side of Eq.(11) is positive, and thus hν ≥W .
By using a relation for light velocity c with frequency ν and wavelength λ,we obtain

λ ≤ hc

W
(1.12)

This explains the reason why the photoelectric effect cannot occur unless the wavelength is shorter
than the threshold value of λt = hc/W .

As indicated in Table 1.1, the work function W is a characteristic quantity of the matter. It
is therefore reasonable that the threshold wavelength varies depending on the individual matter.
Since a photoelectron is produced at the expense of a photon, the photoelectron is ejected on
the instant even if the light intensity is low, and the larger the number of photons becomes with
intense light, the larger the photoelectric current becomes with the increase of the photoelectrons.
The equation for the energy conservation, eVmax = hν −W , explains the experimental facts in
Fig.1.6d. Thus, the light with a frequency ν became understood to behave as photons like particles
with a characteristic energy of hν.

Example 1.6. The threshold wavelength for a copper plate was determined to be 255 nm in an
experiment of the photoelectric effect. Obtain the work function of copper in units of J or eV.

(Solution) The formula for the photoelectric effect leads to the following relationship between the
work function W and the threshold wavelength λt.

λt =
hc

W

Thus,

W =
hc

λt
=

(6.63× 10−34 J s)(3.00× 108 m s−1)
255× 10−9 m

= 7.45× 10−19 J · · · (answer in units of J)

=
7.45× 10−19 J

1.602× 10−19 J eV−1

= 4.65 eV · · · (answer in units of eV)

1.5 Atomic spectra and energy levels

In the middle of the nineteenth century, studies of spectra of light emitted from flame and gas
discharges have revealed atomic spectra characteristic of the chemical element. At the early stage
of the twentieth century, studies of internal structures of atoms have developed to elucidate the
mechanism of characteristic atomic spectra.

A gaseous discharge of hydrogen gives brilliant lines of the atomic spectrum of the hydrogen
atom with a series of four wavelengths in the visible region(400 ∼ 800 nm); the wavelength values
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Table 1.1: The work functions W for various metals
Metal Work function/eV Metal Work function/eV

cesium Cs 1.95 aluminum Al 4.28
potassium K 2.28 tin Sn 4.42
sodium Na 2.36 iron Fe 4.5
calcium Ca 2.9 tungsten W 4.6
zinc Zn 3.63 copper Cu 4.65
magnesium Mg 3.66 gold Au 5.1
lead Pb 4.25 nickel Ni 5.15
silver Ag 4.26 platinum Pt 5.64

Table 1.2: The spectral line series of the hydrogen atom (wavelength in nm)
series m n wavelength for n = m+ 1 wavelength for n→∞

Lyman 1 2,3,4,· · · 121.6 91.18
Balmer 2 3,4,5,· · · 656.5 364.7
Paschen 3 4,5,6,· · · 1876 820.6
Brackett 4 5,6,7,· · · 4052 1459
Pfund 5 6,7,8,· · · 7460 2279

corrected to the vacuum are λ1 = 656.47 nm, λ2 = 486.28 nm, λ3 = 434.17 nm, λ4 = 410.29 nm.
In 1885 Balmer discovered the following formula (Balmer’s formula), which fits the wavelengths
of the brilliant lines.

λk =
a(k + 2)2

(k + 2)2 − 4
(a = 364.7 nm) (1.13)

Here, λkis the wavelength of the k-th line for k = 1 ∼ 4 in the visible spectrum, and lines for
k = 5 can also be observed in the ultraviolet region. A series of spectral lines corresponding to
eq.(1.13) is called the Balmer series, which converge to a = 364.7 nm when k → ∞. Some other
series (Table 1.2) were also observed in the infrared and ultraviolet regions. These series were
found commonly to fit in with the following formula (Rydberg’s formula).

1
λ

=
R

m2
− R

n2
(1.14)

Here, m and n are positive integers, which should be assigned to a particular spectral line, and R
is the Rydberg constant. Rydberg’s formula can be applied not only to emission spectra but also
to absorption spectra, which are observed as the loss of light intensity after passing through the
sample.

Example 1.7 Using Balmer’s formula with its constant a = 364.7 nm in comparison with Ryd-
berg’s formula, obtain the Rydberg constant R.

(Solution) Transforming eq.(1.14) into a form similar to eq.(1.13), we obtain

λ =
1
R
· n

2 ·m2

n2 −m2

A comparison of this equation with eq.(1.13) leads to n = 2, m = k + 2, and

a =
n2

R
=

4
R

Thus, we obtain

R =
4
a

=
4

364.7× 10−9 m
= 1.097× 107 m−1
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Let us consider the significance of Rydberg’s formula based on the quantum theory by Planck
and Einstein. The essence of absorption or emission of light (electromagnetic wave) is a process
of taking or giving photons hν, in which the law of conservation of energy is considered to hold.
Multiplying both sides of eq.(1.14) by hc and using a relation of c = νλ, the photon energy hν
upon light absorption or emission can be expressed as a difference of two terms as follows.

hν =
Rhc

m2
− Rhc

n2
(1.15)

In connection with the interpretation of the photoelectric effect that the energy balance of an
electron equals to hν, each term in the right hand side of eq.(1.15) is suggested to correspond to
the energy of the electronic state before or after the light absorption or emission. Since the energy
of an electron captured in matter is negative as in the case of eq.(1.10), a formula for the energy
level of an electron in hydrogen atom can be obtained as follows,

En = −Rhc
n2

(1.16)

where n is a positive integer 1, 2, 3, · · · . By using this formula for the energy levels, eq.(1.15) can
be generalized in the following form with an assumption of En > Em.

hν = En − Em or Em + hν = En (1.17)

As shown by arrows in Fig.1.7, upon light absorption an electron steps up from the lower level
to the higher level, and upon light emission an electron steps down from the higher level to the
lower level.

Figure 1.7: Light absorption and emission and Bohr’s frequency condition

Eq.(1.17) leads to the following equation for the frequency ν.

ν =
En − Em

h
(1.18)

This equation was first proposed by N.H.D. Bohr in 1913 and called Bohr’s frequency condition.
Now, let us consider the meaning of eq.(1.16) and Fig.1.7. The electronic state of n = 1 is the
lowest energy state and is called the ground state. Higher energy states of n ≥ 2 are called excited
states. In a state of n → ∞the electron energy becomes 0, and the electron is released from the
attractive force by the nucleus. This state corresponds to the ionic state (ionized state) in which
a proton and an electron in a hydrogen atom are separated in the infinite distance. Thus, the
ionization energy of hydrogen WH is given by the next formula.

WH = E∞ − E1 = 0− (−Rhc) = Rhc (1.19)
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Figure 1.8: Energy levels and spectra of hydrogen atom

Example1.8 Using the value of Rydberg constant R obtained in the Example 1.7, obtain the
ionization energy of hydrogen atom WH in units of J, eV, and J mol−1.

(Solution) Equation (1.19) gives WH = Rhc, and we obtain

WH = (1.097× 107 m−1)(6.626× 10−34 J s)(2.998× 108 m s−1)
= 2.179× 10−18 J

=
2.179× 10−18 J

1.602× 10−19 J eV−1 = 13.60 eV

For 1 mol,

(2.179× 10−18 J)(6.022× 1023 mol−1) = 1312 kJ mol−1

In 1911, E. Rutherford proposed a model of the atomic structure based on experimental studies
of α particles (stream of helium nuclei) scattered by metallic foil such as gold foil. In this model,
a hydrogen atom is composed of a proton and an electron moving round it.

Bohr derived a successful formula for energy levels of hydrogen atom in 1913 by introducing
new ideas into a physical system of an electron moving round a proton at a constant distance of
r. A circular motion of an electron with a velocity v around a proton at a radius of r gives the
following equation between the electric force due to Coulomb’s law and the centripetal force of
the circular motion.

e2

4πε0r2
=
mv2

r
(1.20)

Here, the left-hand side is the Coulomb force, and the right-hand side is the centripetal force. In
general, the force equals (mass)×(acceleration), according to Newton’s law of motion. In this case,
the mass is the electron mass m, and the centripetal acceleration is v2/r. Bohr assumed a quantum
condition that requires a product of momentum (mass m × velocityv) and the circumference of



CHAPTER 1. QUANTUM THEORY AND THE WAVE EQUATION 15

Figure 1.9: Bohr’s model

the circle (2πr) to be an integer multiple of Planck constant h.

(mv)(2πr) = nh (n = 1, 2, 3, · · · ) (1.21)

Unless this condition is fulfilled, the system cannot be in a stable stationary state. From equations
(1.20) and (1.21), the radius of the circular orbit in the stationary state is derived as follows.

r =
n2ε0h

2

πme2
= n2aB (n = 1, 2, 3, · · · ) (1.22)

Here, aB = ε0h
2/πme2 is the orbital radius in the stationary state of n = 1 and called Bohr

radius. The value of aB is 5.292 × 10−11 m, and this distance may be considered as the size of
a hydrogen atom. The total energy E of an electron is the sum of its kinetic energy mv2/2 and
its potential energy U . The potential energy U(r) of an electron under the Coulomb force in the
left-hand side of eq.(1.20) can be obtained as follows. The potential energy at the infinite distance
U(∞) is taken to be 0 as the reference energy. Then, the work required for removing the electron
from the distance r to the infinite distance against the Coulomb attraction equals U(∞)− U(r)

U(r) = U(∞)−
∫ ∞
r

e2

4πε0r2
dr =

[
e2

4πε0r

]∞

r

= − e2

4πε0r

Using eq.(1.20), the energy becomes

E =
mv2

2
− e2

4πε0r
= − e2

8πε0r

Substituting eq.(1.22) for r, we obtain a formula for the n-th energy level En as follows.

En = −me
4/8ε0

2h2

n2
(1.23)

A comparison of this equation with eq.(1.16) gives a theoretical representation of the Rydberg
constant R.

R =
me4

8ε0
2h3c

(1.24)

1.6 Particles and wave characters

According to Einstein’s idea, a photon with an energy hν (frequency ν and wavelength λ) has
a linear momentum along its propagating direction of the following magnitude p.

p =
hν

c
=
h

λ
(1.25)
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In 1923 A. H. Compton verified this idea using scattering experiments of X-rays and electrons.
Thus, the behavior of photons having a momentum h/λ together with an energy hν was revealed.
In 1923 de Broglie postulated conversely that a particle can have a wavelength corresponding to
its momentum via eq.(1.25) in which the momentum and the wavelength are related from one to
the other and vice versa. The wave behavior of electrons is called an electron wave, and in general
the wave behavior of matter is called a matter wave or de Broglie wave. The wavelength λ for a
matter wave is given by the following equation, which is equivalent to eq.(1.25).

λ =
h

p
(1.26)

This relationship is called de Broglie relation.

Example 1.9 Calculate the wavelength of the electron beam given by acceleration of electrons
from 0 V to 150 V.

(Solution) The kinetic energy E is an energy gained through acceleration by the potential difference
that is the applied voltage of 150 V.

E = 150 eV = (150 eV)(1.602× 10−19 J eV−1) = 2.403× 10−17 J

In general there are the following equations for the electron mass m, velocity v, momentum p, and
kinetic energy E.

E =
1
2
mv2, p = mv

Using the de Broglie relation λ = h/p, we obtain

λ =
h

mv
= h(2mE)−1/2

= (6.626× 10−34 J s)(2× (9.109× 10−31 kg)(2.403× 10−17 J))−1/2

= 1.00× 10−10 m

(A useful formula to obtain the wavelength λ of an electron wave with a kinetic energy of Z eV
is given as λ =

√
150/Z × 10−10 m) Beautiful spots as shown in Fig.1.10 were observed by M. T.

F. Laue in 1912, when X-rays were irradiated on a crystal. This demonstrates the diffraction of
X-rays that behave as electromagnetic waves. X-rays reflected by regular arrays of atoms with a
spacing d (Fig.1.11) are enhanced, if the following condition is fulfilled.

Figure 1.10: Laue spots of calcium carbonate (provided by Rigaku Denki)
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2d sin θ = nλ (n = 1, 2, 3, · · · ) (1.27)

This is called the Bragg condition of reflection (Bragg’s law), and n is called the order of reflection.

Figure 1.11: X-ray diffraction by crystal lattice

Similarly, electron waves were experimentally confirmed to produce diffraction phenomena with
regular arrays of atoms in crystals by C. J. Davisson and L. H. Germer in 1925 and also by G.
P. Thomson in 1927. A typical pattern of electron diffraction is shown in Fig.1.12. The spatially
inhomogeneous distribution created by the interference of electron waves is closely related with
the production and destruction of chemical bonding.

Figure 1.12: Electron diffraction pattern of gold polycrystals
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1.7 Wave equations

In 1926 fundamental equations inclusively describing both particle and wave characteristics
were proposed in terms of wave mechanics by Schrödinger and matrix mechanics by Heisenberg.
Though their mathematical forms were different, these theories were proved to be equivalent in
their physical significance by E. Schrödinger. In this textbook, the fundamental equation for
quantum mechanics is treated in terms of wave mechanics.

As we have already studied in section 1.3, a typical example for waves with a frequency ν and
a wavelength λ is represented by

Ψ(x, t) = Ae2πi( xλ−νt)

Using a formula for differentiation of an exponential function (deax/dx = aeax), derivatives with
respect to time t or position x lead to the following equations, respectively.

∂Ψ
∂t

= −i(2πν)Ψ

∂Ψ
∂x

= i

(
2π
λ

)
Ψ

It should be noted that the partial differentiation symbol ∂ is used in place of d when numbers
of variables are more than one. Using the equations connecting particle and wave characteristics,
E = hν and p = h/λ, we obtain the following simultaneous differential equations that do not
include ν and λ explicitly.

i~
∂Ψ
∂t

= EΨ (1.28)

−i~∂Ψ
∂x

= pΨ (1.29)

Here, ~ is a constant denoting (h/2π). Equations (1.28) and (1.29) connect particle quantities E
and p with a wave function Ψ. Let us study the mathematical properties of these equations before
applying them to some systems. The equation (1.28) shows that the operation of i~∂/∂t on Ψ
from the left is equivalent to a simple multiplication of Ψ by the energy E. The equation (1.29)
indicates that the operation of −i~∂/∂x on Ψ from the left is equal to a simple multiplication
of Ψ by the momentum p. Mathematical operations, such as i~∂/∂t and −i~∂/∂x, are called
operators. Namely, these operators stand for the energy E and the momentum p, respectively.

i~
∂

∂t
↔ E

−i~ ∂
∂x

↔ p

In order to apply these simultaneous equations to particular problems, it is necessary to know
a relation between E and p. In classical mechanics before the birth of quantum mechanics, an
important relation between E and p was known as the Hamilton function, which represents the
energy of the system as a function of the momentum p, the position x, and time t.

E = H(p, x, t) (1.30)

With the help of the Hamilton function H, the equations (1.28) and (1.29) can be united into a
single equation. In order to do this, let us first derive a Hamilton function for a system in which
a particle of mass m moves with a kinetic energy 1

2mv
2 under a potential energy of U . Noting

that the momentum of this particle is p = mv, we obtain

H =
1
2
mv2 + U =

1
2
m
( p
m

)2

+ U =
p2

2m
+ U (1.31)

Substitution of this equation into the right side of eq.(1.28) with using eq.(1.30) leads to the



CHAPTER 1. QUANTUM THEORY AND THE WAVE EQUATION 19

following result.

i~
∂Ψ
∂t

=
(
p2

2m
+ U

)
Ψ =

p

2m

(
−i~ ∂

∂x

)
Ψ + UΨ

=
1

2m

(
−i~ ∂

∂x

)2

Ψ + UΨ

=
(
− ~

2

2m
∂2

∂x2
+ U

)
Ψ (1.32)

As can be seen from this example, equations (1.28) and (1.29) can be combined into one equation
when the energy E in the right side of eq.(1.28) is replaced by the corresponding Hamilton function
H in which the momentum p should be replaced by the respective operator p̂.

Ĥ = H(p̂, x, t) (1.33)

In general, replacing the momentum p in the expression of Hamilton function by the respective
operator p̂ in eq.(1.33) we obtain the quantum mechanical Hamilton function Ĥ.

Ĥ = H(p̂, x, t) (1.34)

Ĥ is called Hamilton operator or Hamiltonian. Using this operator, two equations (1.28) and
(1.29) are unified into one equation.

i~
∂Ψ
∂t

= ĤΨ (1.35)

This equation is the most fundamental equation of the quantum mechanics and is called the
Schrödinger equation after the name of the discoverer. The wave function Ψ in this equation
represents the state in which the system of matter exists. The physical significance of Ψ will be
discussed in the later sections.

Although eq.(1.35) could be derived from a simple wave function, this equation is known to
be applicable to general problems. Generalization of the Hamiltonian and the wave function in
eq.(1.35) will be studied later. Procedures for solving the wave equation and the meanings of the
solutions will also be studied in the later sections.

1.8 Wave functions and probabilities of finding particles

In the photoelectric effect, the more the light intensity (the square of the amplitude of the
electromagnetic wave) increases, the more the number of photons increases linearly. Namely, the
number of photons is proportional to the square of the amplitude. In 1926 Born generalized this
idea to propose that the square of the absolute value of the wavefunction Ψ is proportional to
the probability of finding the particle. The absolute value should be used for the general wave,
because the wave may be a complex function rather than a real function. The square of the
absolute value of the complex wave function Ψ is obtained by the following equation.

|Ψ|2 = Ψ ·Ψ∗ (1.36)

Here, Ψ∗ is the complex conjugate of Ψ, and it is given via simple replacement of every imaginary
unit i included in the mathematical expression of Ψ by −i.

Ψ∗ = Ψ(i→ −i) (1.37)

The probability of finding a particle moving along the x axis in a particular region between x and
x+dx is expressed as |Ψ(x, t)|2dx by using the wavefunction Ψ(x, t). Since the probability finding
the particle in the region from x = −∞ to x = +∞ is equal to 1, the next integral must be 1.

∫ ∞
−∞
|Ψ(x, t)|2dx = 1 (1.38)

This is the normalization condition of the wavefunction. If this condition is satisfied, the wave-
function is said to be normalized.
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When a wavefunction is a solution of eq.(1.35), any multiplication of the wavefunction by
an arbitrary constant also yields a solution of eq.(1.35). Solutions of the wave equation are
therefore arbitrary for their proportionality constants. The normalization condition removes the
arbitrariness of a real wavefunction except for its sign. In the case of a complex wavefunction,
an ambiguity of the phase factor of eiθ remains. However, the phase factor does not change the
square of the absolute value, and the physical meaning of the wavefunction is irrelevant with the
phase factor. Thus, one may choose arbitrarily the value of θ in the phase factor, for example θ
can be set equal to be 0.

Since the first derivatives of the wavefunction are related to the energy E and the momentum
p according to eqs.(1.28)-(1.29), the wavefunction representing a state with finite energy and
momentum should be continuous with respect to the time and the position. This important
characteristic of acceptable wave functions should not be disregarded, when one needs to obtain
a wavefunction by solving the wave equation.

Before closing this section, it is important to note the quantum mechanical significance of the
wavefunction.

1. The state of a system is described by the wavefunction.

2. The probability that a particle will be found at a position is proportional to the square of
the absolute value of the wavefunction.

3. The wavefunction evolves in time according to the equation

i~∂Ψ
∂t = ĤΨ.

1.9 Stationary states and eigenvalue equations

If the energy E is independent of time t, the probability of finding a particle is also independent
of t. States of this kind are called stationary states. When the energy E is a constant, irrespective
of time t, eq.(1.28) is easily integrated for t to yield the following solution.

Ψ(x, t) = ψ(x) · exp
(
−iEt
~

)
(1.39)

The symbol ψ(x) is the integration constant arising from the integration with respect to t, and
thus ψ(x) is independent of t, though it depends on the position coordinate x. Although the wave
function for the stationary state Ψ(x, t) in eq.(1.39) oscillates as a function of t, the square of the
absolute value of Ψ(x, t), that is the product Ψ(x, t) ∗Ψ(x, t), remains constant.

|Ψ(x, t)|2 = ψ(x) · exp
(
−iEt
~

)
· ψ(x)∗ · exp

(
i
Et

~

)

= ψ(x) · ψ(x)∗ = |ψ(x)|2 (1.40)

Therefore, the probability of finding a particle in the stationary state is independent of t and
calculated to be the same even if the time-independent function ψ(x) is used in place of Ψ(x, t).
Thus ψ(x) is called the wavefunction of the stationary state. Inserting Ψ(x, t) in eq.(1.39) into
the wave equation (1.35) and rearranging the formula, we obtain

(Ĥψ − Eψ) exp
(
−iEt
~

)
= 0

Thus the following equation determining the wavefunction of the stationary ψ(x) state is given.

Ĥψ = Eψ (1.41)

This is called the Schrödinger equation for stationary states or the time-independent Schrödinger
equation.
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Example 1.10 Write the time-independent Schrödinger equation for a one-dimensional har-
monic oscillator that contains a particle with a mass m moving on the x-axis under the potential
energy of U(x) = 1

2kx
2(k > 0).

(Solution) The time-independent Schrödinger equation is expressed as Ĥψ = Eψ. In this case
the motion of the particle is restricted to the x-axis, the wavefunction is a function of x and
represented as ψ = ψ(x). The Hamiltonian Ĥ of this system is obtained from the Hamilton
function H composed of the sum of the kinetic energy and the potential energy. For this system,
The momentum p of the particle leads to the kinetic energy of p2/2m and the potential energy is
1
2kx

2, and we obtain

H =
p2

2m
+

1
2
kx2

Thus the Hamiltonian Ĥ is derived by simply replacing the momentum p with the operator
p̂ = −i~∂/∂x in the expression of H. This replacement must be made twice for p2/2m, and we
obtain

1
2m

(
−i~ ∂

∂x

)2

= − ~
2

2m
∂2

∂x2

The potential energy 1
2kx

2 can be left as it is, since it does not contain the momentum p. Therefore
the Hamiltonian Ĥ is expressed as

Ĥ = − ~
2

2m
∂2

∂x2
+

1
2
kx2

Inserting this Ĥ into Ĥψ = Eψ, the time-independent Schrödinger equation for a one-dimensional
harmonic oscillator is given as

(
− ~

2

2m
∂2

∂x2
+

1
2
kx2

)
ψ(x) = Eψ(x)

note F (x) = −dU(x)/dx = −kx (k > 0) represents the force acting on the particle. A particle
in a harmonic oscillator undergoes a returning force (restoring force) proportional to its
displacement from the equilibrium and oscillates around the equilibrium position. The
displacement of an elastic body such as a spring is proportional to the applied force. This
is called Hooke’s law.

p̂ and Ĥ are operators corresponding to the momentum and the energy, respectively. An
operator F̂ corresponding to an arbitrary observable F (p, x) is introduced as F (p̂, x) by inserting
eq.(1.33) (p̂ = −i~∂/∂x in place of p) in F (p, x). The operator x̂ corresponding to a Cartesian
coordinate x is simply expressed as x̂ = x, since no momentum p is contained in x.

In general, a suitable choice of a function φ yields a F̂ φ proportional to φ and equal to a constant
multiple of φ itself.

F̂ φ = fφ (1.42)

The multiplying constant f is the eigenvalue of the operator F̂ , and the function φ is the eigen-
function of F̂ corresponding to the eigenvalue f . When some eigenfunctions (e.g. φ1 and φ2)
corresponding to the same eigenvalue f are linearly independent of each other (e.g. φ1 is not
proportional to φ2), the eigenvalue f is said to be degenerate. The number of independent eigen-
functions corresponding to the same eigenvalue is the degree of the degeneracy. The equation
(1.42) including a set of an eigenfunction φ and an eigenvalue f for the operator F̂ is called the
eigenvalue equation of F̂ . The wave equation (1.41) for stationary states (the time-independent
Schrödinger equation) is the eigenvalue equation of the Hamiltonian operator Ĥ corresponding to
the energy. The equation (1.41) gives possible sets of eigenfunctions ψ and eigenvalues E for the
energy.

In a stationary state, the energy E and the probability of finding the particle are independent
of time t. However, we should not consider that the particle rests at a certain position. Even in
a stationary state, motion of a particle is taken into account as the oscillation of the phase factor
in eq.(1.39) satisfying the time-dependent wave equation of (1.35).
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1.10 A particle in a one-dimensional box

The best way to understand procedures for solving wave equations and the significance of the
solutions is to study typical examples. Let us solve the time-independent Schrödinger equation
Ĥψ = Eψ for a particle with a mass m, which is confined in a region (0 < x < L) on the x-axis
(one-dimensional box). The Hamiltonian of this system is given by

Ĥ = − ~
2

2m
∂2

∂x2
+ U(x)

U(x) is the potential energy of the system. The limitation of the particle motion is imposed on
U(x) as follows (Fig.1.13).

Inside the box (0 < x < L) U(x) = 0
Outside the box (x ≤ 0 or x ≥ L) U(x) = +∞ (1.43)

This treatment naturally leads to no probability of finding the particle outside the box. If ψ(x) 6= 0
at U(x) = +∞, then both sides of Ĥψ = Eψ become divergent.

Figure 1.13: Potential energy U(x) for a particle in a one-dimensional box

Since U(x) = 0 inside the box, the wave equation Ĥψ = Eψ becomes a very simple form as

d2ψ

dx2
= −κ2ψ (1.44)

where

κ =
(

8π2mE

h2

)1/2

(1.45)

The general solution of eq.(1.44) is well known, and it is given by

ψ(x) = a · eiκx + b · e−iκx (1.46)

Substitution of this expression into the left side of eq.(1.44) will lead the right side.
In order to adapt ψ(x) in eq.(1.46) to the physical interpretation of the quantum theory, we

need to consider the continuous properties of wavefunctions. In this case, ψ(x) must be continuous
at both ends of the box (x = 0 and x = L). Thus, the following conditions are required.
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At an end of the box (x = 0), ψ(0) = a+ b = 0,
and at another end of the box (x = L), ψ(L) = a · eiκL + b · e−iκL = 0.
Therefore, we obtain

a = −b (1.47)
a(eiκL − e−iκL) = 0 (1.48)

Since the possible values for the energy eigenvalue E are not apparent, we must classify the
possible cases as follows.
1) (E < 0)

From eq.(1.45) κ is a pure imaginary number, and hence the parenthesis in the left of eq.(1.48)
cannot be equal to 0. This leads to a + b = 0, and then ψ(x) = a eiκx + b e−iκx = 0 for all
x(0 < x < L). Clearly this is not consistent with our assumption of a particle in a box.
2) (E = 0)

From eq.(1.45) κ = 0 and ψ(x) = a + b = 0 for all x(0 < x < L). This is also incompatible
with the assumption of a particle in a box.
3) (E > 0)

In this case κ > 0, and hence the parenthesis in the left of eq.(1.48) can be equal to 0. This
condition is

eiκL = e−iκL or e2iκL = 1 (1.49)

It should be noted that e2kπi = 1 for an arbitrary integer k. Thus the possible values for κ(κ > 0)
should satisfy the following condition.

κL = nπ (n = 1, 2, 3, · · · ) (1.50)

Inserting this κ into eq.(1.45), we obtain the possible values for the energy E with an integer n.

En =
n2h2

8mL2
(1.51)

This is the formula of the energy levels for a one-dimensional particle in a box. For any energies
other than the special values in eq.(1.51) there are no solutions. The appearance of discrete levels
is a consequence of quantization of energy. Quantized energy levels are classified with the positive
integer n. These numbers representing quantized states are said to be quantum numbers.

The wavefunction corresponding to the energy level En, can be determined from equations
(1.46), (1.47), and (1.50).

Outside the box (x < 0 or x > L) ψn(x) = 0
Inside the box (0 < x < L) ψn(x) = a(eiκx − e−iκx) = 2ai sinκx = c sin(nπx/L)

Here, the formula eiθ = cos θ+ i sin θ is used, and 2ai is denoted as c. The value of c is determined
by the normalization condition.

∫ ∞
−∞
|ψ|2dx = |c|2

∫ L

0

sin2
(nπx
L

)
dx = 1

The value of the last integral is L/2, and c2 · (L/2) = 1. Thus, c =
√

2/L, and we obtain the
solution within the box.

ψn(x) =

√
2
L

sin
(nπx
L

)
(n = 1, 2, 3, · · · ) (1.52)

The energy levels En and the wavefunctions ψn(x) for a particle in a one-dimensional box with a
length L are shown in Fig.1.14.

The lowest energy state with the quantum number n = 1 is the ground state of a particle in
a box. The probability finding the particle is largest at the middle of the box and decreases on
going to both ends. In the macroscopic world, we can place a particle at any place in a box. On
the other hand in the quantum world, only probabilities can be determined. It is very strange
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Figure 1.14: The energy levels En = n2h2/8mL2 and the wavefunctions ψn(x) for a particle in a
one-dimensional box

that the ground-state energy E1 = h2/8mL2 > 0 is larger than the given potential energy of
U = 0. In a macroscopic system, the minimum energy state of a particle is a state with no motion
and the energy equal to the minimum potential energy Umin (in this case Umin = 0). The fact
that E1 − Umin > 0 indicates that a particle can move with the energy of E1 − Umin, even at the
absolute zero temperature where no energy can be removed from the system any more. Therefore,
the energy of E1 − Umin is called the zero-point energy, and the motion in the ground state is
called the zero-point motion. In the macroscopic world, the mass m of the matter and the length
L of the box are very large, and hence E1 = h2/8mL2 can be disregarded as negligibly small. It
follows that zero-point energies and zero-point motion can be neglected for macroscopic systems.
Definite discrete values are only allowed for excited-state energies of a particle in a box by contrast
with a particle in the macroscopic world for which any energy values can be allowed. Energy levels
for a macroscopic system can be considered as continuous because of very large m and L. As can
be seen from wave functions shown in Fig.1.14, there are some positions with no probability of
finding a particle in an excited state, even though the particle moves in the box. The geometrical
position where ψ = 0 is said to be a node. The number of nodes in the box is n−1, which increases
with the increase of the quantum number n. Waves with more nodes generally have more energy.
This propensity should be noted, and it will be helpful for understanding the nature of electron
waves moving in matter.

Example 1.11 Show the following relation between wavefunctions ψn(x) and ψm(x) for a par-
ticle in a one-dimensional box.

∫ ∞
−∞

ψn(x)∗ψm(x)dx = δnm

δnm is Kronecker’s delta, which equals to 1 for n = m and 0 for n 6= m.
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(Solution) The wavefunction with a quantum number n for a box (0 < x < L) with a length L, is
given by

ψn(x) =

√
2
L

sin
(nπx
L

)
(n = 1, 2, 3, · · · )

For the outside of the box ψn(x) = 0. Let us denote the integral of this problem as Inm.

Inm =
∫ ∞
−∞

ψn(x)∗ψm(x)dx =
∫ L

0

(
2
L

)
sin
(nπx
L

)
sin
(mπx

L

)
dx

The additivity formula for trigonometrical functions

cos(A±B) = cosA cosB ∓ sinA sinB

leads to
sinA sinB =

1
2

(cos(A−B)− cos(A+B))

Thus
Inm = I(−)− I(+)

Here

I(±) =
(

1
L

)∫ L

0

cos
(

(n±m)πx
L

)
dx

Introducing θ = πx/L and using dθ = (π/L)dx, we obtain

I(±) =
1
π

∫ π

0

cos{(n±m)θ}dθ

When (n±m) is not equal to 0,

I(±) =
[

1
π

{
1

n±m
}

sin(n±m)θ
]π

0

= 0

When n = m (n−m = 0),

I(−) =
1
π

∫ π

0

dθ =
π

π
= 1

Therefore,
(1) for n = m, Inm = 1− 0 = 1 and
(2) for n 6= m, Inm = 0− 0 = 0 Using Kronecker’s delta, we obtain Inm = δnm

The integral of this example for n = m is the normalization condition, provided that the
wavefunction has already been normalized. For n 6= m the integral is 0, where two wavefunctions
are said to be mutually orthogonal and to obey the orthogonality. The orthogonality holds in
general between arbitrary wavefunctions corresponding to different eigenvalues. When functions
are normalized for themselves and mutually orthogonal, such a set of functions is said to be
orthonormal and to obey orthonormality.

1.11 Generalization of the wave equation

Now, let us extend the simple wave equation for a particle in a one-dimensional space to the
more general case.
(a) Extension to the three-dimension

The extension from one-dimension to three-dimensions requires three coordinates x, y, and z in
place of only one variable of x. It follows that the wavefunction is denoted as Ψ(x, y, z, t) in place
of Ψ(x, t). Accordingly the velocity v and the momentum p are denoted by vectors with three
components, (vx, vy, vz) and (px, py, pz), respectively. The replacement formula corresponding to
eq.(1.33) is extended to be as follows.
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p̂x = −i~ ∂
∂x

p̂y = −i~ ∂
∂y

(1.53)

p̂z = −i~ ∂
∂z

For a particle with a mass m in three-dimensions, the kinetic energy needed to produce the
Hamiltonian operator is expressed as follows.

p2

2m
=

1
2m

(px2 + py
2 + pz

2) = − ~
2

2m
∆

Here, ∆ is an operator called the Laplacian. Its expression for one-dimension is

∆ =
∂2

∂x2

and for three-dimensions

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

With the Laplacian symbol ∆, the Hamiltonian for one particle with a mass m can be written,
irrespective of the dimension, in the same expression as

Ĥ = − ~
2

2m
∆ + U (1.54)

It should be noted that the potential energy U for one-dimension or three-dimensions is U(x) or
U(x, y, z), respectively.

The Laplacian ∆ may be replaced by ∇2 or ∇ · ∇ , where ∇ is a mathematical symbol called
nabla, which is given by the next formula.

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Thus, the Laplacian ∆ is equal to an inner product or a scalar product .

∆ = ∇ · ∇ (1.55)

Although both of these expressions may be used, ∆ is used in this book.
(b) Extension to N-particle system

The wavefunction of a system with N -particles is a function of 3N spatial coordinates
(x1, y1, z1, · · · , xN , yN , zN ) and time t, and it contains information on the probability of finding
the particles. It is convenient to use a symbol q in place of the 3N variables. The wavefunction
Ψ(q, t) for an N -particle system satisfies the same wave equation as the one-particle wavefunction.

i~
∂Ψ
∂t

= ĤΨ (1.56)

A possible state that happens in the real world is only limited to Ψ satisfying this equation
and is called an eigenstate. The probability of finding each particle in a volume of dxidyidzi
corresponding to a particular region of xi ∼ xi + dxi,yi ∼ yi + dyi, zi ∼ zi + dzi is given for the
eigenstate Ψ by

|Ψ(q, t)|2dq (1.57)

The integration of eq.(1.57) over the entire region of 3N dimensional space should be equal to 1,
since it is the total summation of the probabilities (normalization condition).

∫
|Ψ(q, t)|2dq = 1 (1.58)
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Here,
dq = dx1dy1dz1 · · · dxNdyNdzN (1.59)

represents the volume element of 3N -dimension, and the corresponding integration should be taken
for all of the 3N variables over the entire space. The integral in eq.(1.58) is simply expressed with
a single

∫
in stead of using 3N

∫
, corresponding to the abbreviation for the volume element dq.

The range of the integration for each variable xi, yi, or zi is from −∞ to ∞.
Ĥ in eq.(1.56) is the Hamiltonian operator for an N -particle system, which can be easily con-

structed from a classical energy expression of the Hamilton function H(p, q, t) by using the fol-
lowing replacement formula for p̂ in place of the momentum p.

p̂ = −i~ ∂
∂q

(1.60)

Thus,
Ĥ = H(p̂, q, t) (1.61)

For a stationary state in which H(p, q, t) = E (a constant at any time t),

Ψ(q, t) = ψ(q) exp
(
−iEt
~

)
(1.62)

|Ψ(q, t)|2 = |ψ(q)|2 (1.63)

The wavefunction for a stationary state ψ(q) satisfies

Ĥψ = Eψ (1.64)

The normalization condition for ψ(q) is
∫
|ψ(q)|2dq = 1 (1.65)

1.12 The motion in two-particle systems

Many particles need to be considered in general for the application of the wave equation to
chemical problems. In order to see an outlook of the application to molecular systems, let us first
deal with two-particle systems. Problems in two-particle systems can be reduced to one-particle
problems, when the relative motion and the motion of the center of gravity are separated.
(a) Separation of the relative motion from the translation

Let us suppose that the energy of two particles E is expressed as a sum of kinetic energies E1

and E2 for the particles and the potential energy U ,

E = E1 + E2 + U (1.66)

where

E1 =
1
2
m1V2

1

E2 =
1
2
m2V2

2

and mi, Vi are the mass and the velocity of the i-th particle (i = 1 or 2), respectively. Coordinates
for the center of gravity (X, Y, Z) are related to coordinates for each particle (xi, yi, zi).

X =
m1x1 +m2x2

m1 +m2

Y =
m1y1 +m2y2

m1 +m2
(1.67)

Z =
m1z1 +m2z2

m1 +m2
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Since the particle velocity Vi is a vector composed of time-derivatives of the Cartesian coordinates
for the particle, the velocity for the center of gravity VG is represented with the particle velocities.

VG =
m1V1 +m2V2

m1 +m2

The relative coordinates can be introduced as the positions of the second particle with respect to
the first particle

x = x2 − x1

y = y2 − y1

z = z2 − z1

(1.68)

The relative velocity V, which is defined as the time-derivative of the relative position, is given
by

V = V2 −V1 (1.69)

The motion of the center of gravity, which is independent of the relative motion between the
particles, corresponds to parallel motion keeping relative geometries between the particles and is
called the translational motion or translation.

The energy of the two-particle system is expressed as the sum of energies for the relative motion
and the translation.

E =
1
2

(m1 +m2)VG
2 +

1
2
µV2 + U (1.70)

The first term represents the kinetic energy of the translation, and the second term represents
the kinetic energy of the relative motion, where µ is the reduced mass defined by the following
formula.

µ =
1

1/m1 + 1/m2
(1.71)

Since we may choose an arbitrary coordinate system, the motion of two-particle systems with
respect to coordinates fixed at the center of gravity can be simply expressed as

E =
1
2
µV2 + U (1.72)

where V = 0. This is the energy of a particle with a mass µ and a velocity V moving under
the potential energy U . Therefore, the motion of a two-particle system is reduced to that of one
particle with a reduced mass µ. Thus, the corresponding Hamiltonian of the relative motion of
this system is represented with a Laplacian ∆ as

Ĥ = − ~
2

2µ
∆ + U (1.73)

Figure 1.15: Relative motion of two-particle systems (a) Rotational motion with a fixed r (b)
Vibrational motion

(b) Separation of rotation and vibration
The relative motion of two-particle systems can be divided into rotation and vibration. The

rotational motion can be imagined by the rotation of a dumbbell. A prototype of the vibrational
motion is the vibration of two balls connected with a spring, as shown in Fig.1.15. Angles are
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suitable variables for rotation. Let us transform Cartesian coordinates into polar coordinates
using (r, θ, φ) in three-dimension, as shown in Fig.1.16.

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

(1.74)

r is the distance from the origin of the coordinates and said to be the radial distance. θ is the
angle of the inclination from the z-axis and said to be the polar angle. φ is the angle around the
z-axis and said to be the azimuthal angle. The spatial orientation is specified by the two angles
θ and φ. In the polar coordinate system, variations in the angles (θ, φ) and the distance (r)
represent rotational and vibrational motion, respectively. In the Cartesian coordinate, rotation
and vibration cannot be separated.

Figure 1.16: The polar coordinates

(c) Wave equation in the polar coordinates
The Laplacian for the relative motion of a two-particle system is given by

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

Λ (1.75)

Λ is an operator for angles and is known as the Legendrian.

Λ =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2
(1.76)

By using these equations, the Hamiltonian for the relative motion is written as

Ĥ = − ~2

2µr2

(
∂

∂r

(
r2 ∂

∂r

)
+ Λ

)
+ U (1.77)

This Hamiltonian can be applied to important problems in chemistry. Let us see some typical
examples of the wave equations, their energy eigenvalues, and wavefunctions.

(1) Reduced mass and energy levels of a hydrogen atom
A typical example is a hydrogen atom, which is a two-particle system of a proton and an

electron. Equation (1.71) leads to the reduced mass for this system with the proton mass of M
and the electron mass m as follows.

µ =
1

1/M + 1/m
(1.78)

Since m/M is as small as about 1/1836, 1/M is negligibly small in comparison with 1/m in the
denominator of the eq.(78). With this approximation, µ = m, and hence the Hamiltonian in
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eq.(1.73) is clearly the same as that for the electronic motion in a hydrogen atom with the fixed
nucleus (Bohr’s model). Rigorously, the reduced mass µ should be used without using m in the
approximation of M → ∞. Much better agreement with observed spectra will be obtained in
Bohr’s model, if we use µ in place of m.

When eq.(1.77) is used, energy eigenvalues satisfying Ĥψ = Eψ become equal to those for
Bohr’s model using µ in place of m, and they are given as

En = −WH

n2
(n = 1, 2, 3, · · · ) (1.79)

WH =
µe4

8ε0h2
(1.80)

WH is the ionization energy of a hydrogen atom. The rigorous Rydberg constant R using the
reduced mass µ is expressed as follows.

R =
WH

hc
=

µe4

8ε0h3c
(1.81)

This expression reduces to eq.(1.24) for Bohr’s model, when we use µ = m in the approximation
of M →∞. On account of this reason, the Rydberg constant for the case of M →∞ is sometimes
denoted as R∞.

(2) Molecular rotation of a diatomic molecule
The Hamiltonian in eq.(1.77) can be applied to molecular rotation of a diatomic molecule, which

is the rotational motion around an axis passing through the center of gravity. The distance r of
the bonded atoms, which is called the bond length, can be fixed at its equilibrium value, and we
neglect external forces. Then, the Hamiltonian for the rotational motion of a diatomic molecule
is expressed as

Ĥ = −~
2

2I
Λ (1.82)

I is the moment of inertia and given by
I = µr2 (1.83)

The reduced mass in this case is the same as eq.(1.71) for mass of two particles, m1 and m2.
Equation (1.82) can be applied to a circular motion of a particle with mass µ attached at one end
of a hard stick of length r, which is fixed at the other end to the origin of the coordinates. This
circular motion of the particle is restricted to the surface of the sphere. This kind of a rotational
system is called a rigid rotor. Stationary states of such a rigid rotor or the molecular rotation are
described by wavefunctions of two angles θ and φ.

Figure 1.17: The rotational energy levels (a) and the rotational spectrum (b). The rotational
constant, B = h

8π2µr2 . The selection rule for rotational transitions, ∆J = ±1.

By solving Ĥψ = Eψ with eq.(1.82), energy levels are obtained as follows (Fig. 1.17).

EJ =
~2

2I
J(J + 1) (J = 0, 1, 2, 3, · · · ) (1.84)
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Here, J is the rotational quantum number. The formula for rotational energy levels can be applied
to molecular rotations of diatomic molecules. Photons corresponding to the energy difference
between the J-th and (J + 1)-th energy levels, which is expressed as ∆E in eq.(1.85), can be
absorbed or emitted to yield molecular rotational spectra.

∆E = EJ+1 − EJ = (J + 1)
~2

I
= 2(J + 1)hB (1.85)

Transitions among rotational levels are called rotational transitions. B in eq.(1.85) is the rotational
constant, which is defined by the following equation.

B =
h

8π2µr2
(1.86)

Associated with the increase of J=0,1,2,3, the corresponding energies of the rotational transitions
expressed as ∆E in eq.(1.85) increase with a constant spacing of (~2/I). In many cases, rotational
spectra of molecules appear in the microwave or far infrared regions. When the moment of inertia
I is obtained from observed spectra, the bond length r can be determined from eq.(1.83) given
the value of the reduced mass. Though analyses become complicated, geometrical structures of
polyatomic molecules can also be determined from rotational spectra. Electromagnetic waves
from interstellar media in the universe contain those emitted as molecular rotational spectra.
Rotational transition probabilities depend on the electric polarization of the molecule. Rotational
transitions cannot occur for nitrogen and hydrogen molecules, since these molecules have no
electric polarization.

(3) Molecular vibration of a diatomic molecule
The Hamiltonian in eq.(1.77) can also be applied to the molecular vibration of a diatomic

molecule, which is the stretching motion of the bond-length r around its equilibrium distance of
re. Fixing the rotational angles θ and φ, the Hamiltonian for the vibrational motion of a diatomic
molecule is expressed as

Ĥ = − ~2

2µr2

∂

∂r

(
r2 ∂

∂r

)
+ U(r) (1.87)

Since the wavefunction ψ(r) is a function of r satisfying Ĥψ = Eψ, we can write ψ(r) using a
function φ(r) as follows.

ψ(r) =
φ(r)
r

(1.88)

Then, we obtain from the eq.(1.87) the following equation.
(
− ~

2

2µ
· ∂

2

∂r2
+ U(r)

)
φ(r) = Eφ(r) (1.89)

For vibrational motion according to Hooke’s law, the potential energy U is proportional to the
square of the displacement Q from the equilibrium position (fig.1.18), and it is given by

U =
1
2
kQ2 (1.90)

Here, k is a constant related to the strength of the spring, which is called the force constant.
The displacement Q is given by the difference between the bond length r and its equilibrium value
re.

Q = r − re (1.91)

Using the displacement Q as the variable, the wave equation for the vibrational motion of a
diatomic molecule is expressed as follows.

(
− ~

2

2µ
· ∂

2

∂Q2
+

1
2
kQ2

)
φ(Q) = Eφ(Q) (1.92)

By solving this equation, energy levels for one-dimensional harmonic oscillator are given by the
following equation (fig.1.18).

Ev =
(
v +

1
2

)
hν (v = 0, 1, 2, 3, · · · ) (1.93)
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Figure 1.18: Potential energy U = 1
2kQ

2 as well as energy levels and wavefunctions for a one-
dimensional harmonic oscillator

Here, v is the vibrational quantum number, and ν is the fundamental frequency of the vibrational
motion, which is given by the following formula.

ν =
1

2π

√
k

µ
(1.94)

This frequency is equal to the fundamental frequency of a one-dimensional harmonic oscillator
with a force constant k and a reduced mass µ.

In the case of a classical harmonic oscillator, the energy of a vibrating spring may change
continuously. While for an oscillator in the quantum theory, only quantized energy values in
eq.(1.93) can be allowed. Energy levels of a harmonic oscillator are equally spaced, and the
energy spacing hν is called the energy quantum of vibration. The energy of the ground state is
E0 = 1

2hν, and this energy is one half of the energy quantum of vibration, which is called the
zero-point energy of vibration. The vibrational motion in the ground state is called the zero-point
oscillation.

As can be seen from eq.(1.94), molecular vibrations oscillate slowly for massive systems and
quickly for strongly bonded systems. Photons of the energy difference between the (v+ 1)-th and
v-th energy levels, which is expressed as ∆E in eq.(1.95), can be absorbed or emitted to yield
molecular vibrational spectra.

∆E = Ev+1 − Ev = hν (1.95)

Vibrational spectra of molecules are usually in the infrared region. Molecular vibrations asso-
ciated with changes of electric polarization tend to undergo vibrational transitions with greater
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probability. Vibrations without changes in electric polarization do not undergo vibrational tran-
sitions.

Although the details of wavefunctions for harmonic oscillators are not described here, their
general characteristics can be seen in fig.1.18. The number of nodal points in the wavefunctions
of harmonic oscillators increases with the increase of the quantum number, one by one, similarly
to the nodal points in the wavefunctions of a particle in the one-dimensional box.

1.13 The angular momentum

Angular momentum is an important physical quantity, especially for problems of energy levels
and spectra of atoms and molecules. In this section, angular momentum is defined, and its
properties are described.

The angular momentum of a particle is defined as an outer product (vector product) r × p of
the position vector r representing its position (x, y, z) and its momentum p̂ = (p̂x, p̂y, p̂z).

l = r × p (1.96)

This equation can be rewritten with components.

lx = ypz − zpy
ly = zpx − xpz
lz = xpy − ypx

(1.97)

The angular momentum introduced here is called the orbital angular momentum, since it is related
to the classical orbital motion of the particle.

Example 1.12 Obtain the orbital angular momentum l of a particle of a mass m circulating
in the x–y plane with a constant velocity of v and a radius r. Then, rewrite Bohr’s condition of
quantization in eq.(1.21) for the restriction of the magnitude of the angular momentum | l |.

(Solution) Since z = 0, pz = 0 for the circular motion around the origin O in the x–y plane as
shown in the figure, the x and y components of l are both vanishing.

lx = ypz − zpy = y · 0− 0 · py = 0
ly = zpx − xpz = 0 · px − x · 0 = 0

Taking the angle θ and the direction of the velocity v as in the figure, we obtain the following
equations.

x = r cos θ
y = r sin θ
px = mvx = −mv sin θ
py = mvy = mv cos θ

The z component of l becomes

lz = xpy − ypx = mvr · cos2 θ +mvr · sin2 θ = mvr

Thus, three components of the orbital angular momentum l are expressed as

l = (0, 0,mvr)
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According to eq.(1.21), Bohr’s condition of quantization is

(mv)(2πr) = nh (n = 1, 2, 3, · · · )
Noting | l | = mvr in the above equation, we obtain

| l | = n~

Thus, Bohr’s condition of quantization indicates that the magnitude of the orbital angular mo-
mentum of the circular motion is quantized to be proportional to the integer multiple of ~.

The operator l̂ = (l̂x, l̂y, l̂z) corresponding to l can be obtained using a formula of eq.(1.53),
which was used for the derivation of the Hamiltonian operator. Using polar coordinates (r, θ, φ),
we obtain the following equations.

l̂x = −i~
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)

l̂y = −i~
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
(1.98)

l̂z = −i~ ∂
∂φ

These equations lead to a useful expression for the square of the angular momentum l2 = lx
2 +

ly
2 + lz

2. Thus , l̂2 which is proportional to the Legendre operator Λ.

l̂2 = −~2 · Λ (1.99)

Characteristic properties of the operator Λ have been studied very well in connection with the
spherical harmonics Yl,m. Some examples for Yl,m are shown in Table 1.3. The following relation
is very important.

ΛYl,m = −l(l + 1)Yl,m (1.100)

or
l̂2Yl,m = l(l + 1)~2Yl,m (1.101)

This is the eigen equation for l̂2; Yl,m is the eigen function, and l(l + 1)~2 is the eigen value. l is
the quantum number determining the magnitude of the orbital angular momentum. This is the
quantum number for the square of l and is restricted to be l = 0, 1, 2, 3, · · · .

The following relation for the z component of the angular momentum l̂z can be confirmed in
Table 1.3.

l̂zYl,m = m~Yl,m (1.102)

This is the eigen equation for l̂z; Yl,m is the eigen function, and m~ is the eigen value. m is the
quantum number for the z component of the orbital angular momentum, and its 2l + 1 possible
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Table 1.3: Spherical harmonics Yl,m(θ, φ)

Y0,0 = 1√
4π

Y2,±2 =
√

15
32π sin2 θe±i2φ

Y1,0 =
√

3
4π cos θ Y3,0 =

√
7

16π (5 cos3 θ − 3 cos θ)

Y1,±1 =
√

3
8π sin θe±iφ Y3,±1 =

√
21

64π (5 cos2 θ − 1) sin θe±iφ

Y2,0 =
√

5
16π (3 cos2 θ − 1) Y3,±2 =

√
105
32π cos θ sin2 θe±i2φ

Y2,±1 =
√

15
8π sin θ cos θe±iφ Y3,±3 =

√
35

64π sin3 θe±i3φ

values associated with the quantum number l are in the range from −l to +l. For example for
l = 1, allowed values are m = −1, 0, 1. Such characteristics of l and m are related to the behavior
of electrons in atoms. A similar relationship is also important in the description of molecular
rotational states. As studied in the rigid rotor of a diatomic molecule, the Hamiltonian operator
is proportional to the Legendrian operator Λ in eq.(1.100), the wavefunctions for the molecular
rotation become spherical harmonics Yl,m.

1.14 Measured values and expectation values

The eigen values (energy eigen values) that satisfy the wave equation for stationary states are
the allowed energies of the system, namely the energy levels. Therefore, the measured energy
values for the stationary states should agree with an energy eigen value. In other words, any value
different from the energy eigen values cannot be measured in principle, except for discrepancies
due to experimental errors. How about the eigen values of the momentum and those of the angular
momentum? It has been confirmed by experiments that the possible values to be measured for
an observable physical quantity should be eigen values of the operator of that observable.

If a system is in a stationary state, the energy should become a definite value, whenever it is
measured. This is because the wave function representing a state of the system is a particular
eigen function belonging to the respective eigen value. The momentum or the angular momentum
is not always definite, and their measured values may be different. This is related to the nature
of the wave function which does not need to be (or be proportional to )particular eigen functions
of the momentum or the angular momentum.

Quantum theoretical investigations of the uncertainty in measured quantities led to the following
rules.

(1) The wave function Ψ(q, t) can be expressed as the following form of a linear combination of
{φi}, which are eigen functions of the physical quantity F .

Ψ(q, t) =
∑

i

ci(t)φi(q) (1.103)

Here, the eigen equation for F is given as

F̂ φi(q) = fiφi(q) (1.104)

(2) Measured values of a physical quantity F should agree with one of eigen values for its
operator F̂ . The probability P (fi) of finding the i-th eigen value fi is given by the square
of the i-th coefficient ci in the above expansion in terms of normalized eigen functions {φi}.

P (fi) = a|ci|2 (1.105)

Since the total probability should be equal to unity,
∑

i

P (fi) = 1 (1.106)
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then the constant a in eq.(1.105) should be normalized as follows.

a =
1∑
i |ci|2

(1.107)

From the above two rules, the average of the measured values 〈f〉 is expected to be given by
the following formula.

〈f〉 =
∑

i

fiP (fi) (1.108)

The value of the right-hand side of this equation is determined by the magnitude of the expansion
coefficients {ci} which represent the amounts of the respective components included in the state
of Ψ. If all ci(i 6= 1) except for c1(i = 1) are 0, then 〈f〉 = f1. In this case, Ψ is a pure state of
Ψ = c1φ1, which includes only the first eigen function, and P (f1) = 1 for i = 1, while P (fi) = 0
for i 6= 1. When a particular eigen value fi among the whole eigen values {fi} of F̂ is always
observed, the state Ψ is the eigen state of the physical quantity F , and this physical quantity F
has always a certain value f . On the other hand for the more general cases of mixed states in
which Ψ contains several components among {φi}, measured values distribute over different eigen
values rather than fixed at a certain value.

The average of measured values 〈f〉 can be directly calculated by the quantum mechanical
expectation value 〈F 〉 defined by the following formula.

〈F 〉 =
∫

Ψ∗F̂Ψdq∫
Ψ∗Ψdq

. (1.109)

The integration should be taken for all variables symbolized as q over the entire ranges of the
variables of Ψ. When Ψ is already normalized, the denominator becomes unity and thus it may
be omitted.

1.15 The commutation relation and the uncertainty princi-
ple

Whether a pair of physical quantities F and G can have certain measured values simultaneously
or not is governed by the properties of the corresponding operators F̂ and Ĝ. In general, if there
exists a class of common eigen functions {φi}, then the following relationship holds.

F̂ Ĝ = ĜF̂ (1.110)

Conversely, if this relationship holds, then there exists a class of common eigen functions {φi} for
F̂ and Ĝ. The above relationship indicates that the operators F̂ and Ĝ commute and that the
order is interchangeable.

Let us consider a special case where an operator F̂ commutes with the Hamiltonian operator Ĥ.
In this case, there exists a function Ψ which is simultaneously an eigen function of both F̂ and Ĥ,
and then a pair of equations F̂Ψ = fΨ and ĤΨ = EΨ are compatible for the same function Ψ. In
such a special case, the wave function Ψ of the eigen function of Ĥ with an eigen value E is also
the eigen function of F̂ with an eigen value f . In a sense, this state of Ψ is a pure state in which
the physical quantity F has always a certain value f . The physical quantity F can have a certain
value, only if the corresponding operator F̂ commutes with Ĥ. If F̂ and Ĥ do not commute, F
does not have a certain value, and a measured value fi will be observed at a probability of P (fi),
according to the rule mentioned above.

Example 1.13 Confirm that the operator of the position coordinate x̂ and the operator of the
x-component of the linear momentum p̂x do not commute.

(Solution) Since x̂ = x and p̂x = −i~ ∂
∂x , we obtain the following equations for an arbitrary
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function φ(x).

x̂p̂xφ = x

(
−i~ ∂

∂x

)
φ = −i~x∂φ

∂x

p̂xx̂φ = −i~ ∂
∂x

(xφ) = −i~φ− i~x∂φ
∂x

It follows that
(x̂p̂x − p̂xx̂)φ = i~φ

Noting that φ is a function of x,
x̂p̂x − p̂xx̂ = i~

Since the right-hand side is not vanishing, we can conclude that x̂ and p̂x do not commute.

Similarly to the above example, ŷ and p̂y and also ẑ and p̂z do not commute. Therefore,
the position coordinate and the linear momentum cannot have certain values simultaneously.
Uncertainties of measured values were studied by W. K. Heisenberg. He found the following
relationship in 1927.

∆q∆p ≥ 1
2
~ (1.111)

Here, ∆q and ∆p denote the uncertainties for the position q and the corresponding momentum p.
Because of this relation, if we want to specify the position, measured values for the momentum
become uncertain with distributed values. Conversely, if we want to specify the momentum,
measured values for the position become uncertain. An analogous relationship was also found for
the uncertainty of the energy ∆E and the time interval ∆t necessary to measure.

∆E∆t ≥ 1
2
~ (1.112)

This means that we need the infinite time to determine the energy precisely. When the time
interval is very short, the energy becomes obscured rather than to be determined at a certain
value. The above two inequalities are called the uncertainty principle.

Exercises

1.1 Associated with a collision of an excited atom with the surface of an electrode in vacuum,
an electron can be emitted as a secondary electron from the surface, and such electrons can be
captured with a metal plate. Using such an apparatus with an ammeter, the electric current
through the circuit connecting the electrode with the metal plate was measured to be 160 pA (1 C
is the electric charge that the electric current of 1 A carries for 1 second). Calculate the number
of excited atoms per second, provided that one excited atom produces one secondary electron.

1.2 The velocity of a nitrogen molecule travelling in the atmosphere at ambient temperature is
ca. 500 ms−1. Calculate the kinetic energy of a nitrogen molecule with this velocity in units of J
or eV.

1.3 A group of infrared rays with wavelengths of 3.3, 6.2, 7.7, 8.6, and 11.3 µm are emitted
from various interstellar matters. It has been a long standing question to determine the substance
that emits these infrared rays. It is well known that infrared spectra of unsaturated hydrocarbon
molecules contain spectral lines of 3000 cm−1 of CH stretching modes, 1600 cm−1 and 1300 cm−1

of CC stretching modes, and 1140 cm−1 and 890 cm−1 of CCH angle bending modes. Which
of these wave numbers correspond to the unidentified infrared wavelengths from the interstellar
matter?

1.4 Estimate the surface temperature of a star emitting the thermal radiation with a maximum
wavelength of 500 nm. Answer this question consulting Example 1.5.

1.5 A photon emitted from a hydrogen atom in the excited state of principal quantum number
n = 2 hit another hydrogen atom in the state n = 2, and a photoelectron was ejected. Calculate
the kinetic energy of this photoelectron.
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1.6 An electron beam produced by acceleration of electrons with a potential difference of 600 V
was projected onto a crystal surface of Ni. The second order reflection was observed at an angle
of 34.5◦. Calculate the interval of the adjacent lattice planes of the crystal.

1.7 Write the wave equation for stationary states of a particle with a mass m moving under a
potential energy of U(r) = 1

2kr
2 (k > 0) depending only on the distance r. Indicate the dependence

on the three dimensional coordinates (x, y, z) explicitly.
1.8 The next two functions ψ1 and ψ2 are wavefunctions for stationary states of a one-dimensional

harmonic oscillator. A,B, and a (a > 0) are constants.

ψ1(x) = Ae−ax
2

ψ2(x) = Bxe−ax
2

Concerning these two functions, answer the next questions (1) and (2).
(1) Normalize ψ1 and ψ2. Using a formula of

∫∞
−∞ e−x

2
dx =

√
π, determine constants A and B,

so as to satisfy the normalization condition.
(2) Substitute ψ1 and ψ2 into the wave equation for stationary states of an oscillating particle with
a mass m and a force constant k. Obtain eigen values for ψ1 and ψ2 by transforming substituted
equations into a form proportional to the respective wavefunction.

1.9 Obtain the expectation value of the position coordinate for a particle in a one-dimensional
box with a length L.

1.10 Show that spherical harmonics functions of Y1,1, Y1,0, and Y1,−1 are eigen functions of the
operator for the square of the orbital angular momentum. Confirm that the eigen values for these
three functions coincide. Verify that any linear combination of these three functions is also an
eigen function of the operator for the square of the orbital angular momentum, and that its eigen
value also agrees with the eigen value of the three functions.


