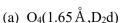
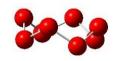
(O₂)_n(n=2,3,4)の構造探索

○浜口孔希1、山門英雄2、大野公一3,4


(和歌山大学大学院システムエ¹、和歌山大学システムエ²、量子化学探索研究所³、東北大院理⁴)

[序論] 酸素分子 O_2 が集まった $(O_2)_n(n=2,3,4)$ になったとき、どのような形状をとるか超球面探索法(Scaled Hypersphere Search method: SHS 法)^[1]により調べた。現在までの探索では、電荷は中性、スピン多重度は 1 として行っている。n=2,3,4 の時いずれも環状分子が見つかり、過去の報告と同様な構造が見られた。

[計算方法] 我々は O_4 、 O_6 、 O_8 の構造探索をするにあたって、化学反応自動探索プログラム GRRM11^[2]を用いた。SHS 法とは振動固有値の平方根でスケールされた基準座標において、実ポテンシャルと調和ポテンシャルとの差:非調和下方歪み(Anharmonic Downward Distortion:ADD)がより大きくなる経路を優先的に探索し、平衡構造(EQ)の周りの反応経路を辿り、遷移構造(TS)を見つけ、その先にある EQ を自動探索することが出来る方法である。エネルギー計算には Gaussian 09 を用い、計算レベルは MP2/6-31G とした。探索時の条件で、各 EQ まわりの ADD の大きな経路から順番に 3 つ辿るという指定 (LADD=3)および乱数を用いてある範囲内に原子をばらまき、1 個の初期構造を発生させるオプション(NRUN=1)を付して探索を行った。


[計算結果] これまでの探索の結果、 O_4 は EQ が 1 個と TS が 2 個、また O_6 と O_8 は EQ が 1 個と TS が 1 個ずつ見つかり、いずれの計算も END が出ている。 O_4 と O_6 および O_8 のいずれもクラウン型構造をもつ EQ 構造がそれぞれ見つかった。分子構造と結合長、対称性を以下の図 1 に示す。これらの分子形状は既に報告されている O_4 [3] と O_6 [3] [4]、 O_8 [4] [5] と整合している。

(b) $O_6(1.56 \text{ Å}, D_3 \text{d})$

(c) $O_8(1.54 \text{ Å}, D_4 \text{d})$

図 1 O₄ と O₆、O₈ のそれぞれの EO 構造

- K. Ohno, S. Maeda, Chem. Phys. Lett., 384, 277 (2004); S. Maeda, K. Ohno, J. Phys. Chem. A, 109, 5742 (2005); K. Ohno, S. Maeda, J. Phys. Chem. A, 110, 8933 (2006).
- [2] 大野公一、長田有人、前田理、諸熊奎治、第 14 回理論化学討論会(2011) 2D1b.
- [3] Oleg B. Gadzhiev, Stanislav K. Ignatov, Mikhail Yu. Kulikov, Alexander M. Feigin, Alexey G. Razuvaev, Peter G. Sennikov, and Otto Schrems, J. Chem. Theory Comput., 2013, 9 (1), pp. 247–262.
- [4] G. Fortea, G.G.N. Angilell, N.H. March, R. Pucci, Phys. Lett.A, Volume 377, Issues 10–11, 1 April 2013, pp. 801–803.
- [5] A.J. Ochoa-Callea, A. Ramírez-Solísb Chem. Phys. Lett., Volume 592, 30 January 2014, pp. 326–329.