二酸化炭素とメタノールからの炭酸ジメチル合成のためのスズテトラアルコキシド

触媒の開発および計算化学と赤外分光を用いた反応経路探索

(東大院総合文化¹・東大院理²) 増井洋一¹・芳我俊介²・尾中篤¹

二酸化炭素とメタノールからの炭酸ジメチル(DMC)の直接合成反応(Scheme 1) はグリーンケミストリーの考え方に沿う 魅力的な反応である.最近筆者らは Sn(Or-Bu)₄を触媒前駆体として用い,系中で MeOH と反応させて活性種であるスズメト キシドを調製することで、既存の *n*-Bu₂Sn(OMe)₂ 触媒²⁾と比べて,同一条件下で非常に高い触媒活性を示すことを明らかに した¹⁾.また、*n*-Bu₂Sn(OMe)₂と異なる Sn(OR)₄ 触媒系の特性に関して量子化学計算に基づく解釈と赤外分光による反応中間 体の確認を試みた.

R₂Sn(OR)₂触媒による DMC 合成では 5 配位スズからなる 2 核錯体中間体 1 を経由する反応経路が計算化学的に提唱され ており、遷移状態 2 を生成する過程が最も活性化エネルギーが大きいと考えられている(Scheme 2)³⁾. Sn(OR)₄に関して同様 の 2 核錯体による反応経路を仮定して、計算化学的に反応経路を考察したところ、5 配位スズ 2 核錯体 1 に相当する構造で はなく、2 つのカーボナート基が互いに架橋した 6 配位スズ 2 核錯体中間体 a が存在することが分かった (Scheme 3). さら に、反応系中に溶媒量存在する MeOH が、a のスズ原子へのカルボニル基の配位の間に嵌入した構造 b が a よりもより安定 な構造として存在することが分かった. 実際に DMC 合成が進行する際には、構造 b にさらにもう一分子の MeOH が配位し カルボニル架橋が一つ外れた構造 c から、一連のスズ原子上での配位子置換反応を経由する(Figure 1). この際、①2 つのス ズ原子の配位数が常に 6 のまま反応が進行すること、②スズとカルボニル基の配位の間に嵌入した MeOH のプロトンが一連 の反応の前後で往来しており、酸触媒として有効に機能していること、の 2 点により、律速段階の活性化エネルギーが大幅 に低下した反応経路が存在することが分かった. 特に、②に関しては、プロトン移動により、求電子種の電子密度が下がっ て活性化されるのみならず、求核種の電子密度が上がるという協奏的な効果が、円滑な反応を引き起こしている点は特筆に 値する(TS_{de}および TS_{fg}). このため、R₂Sn(OR)₂触媒系では律速段階($\Delta G^{\ddagger} > 30$ kcal/mol)であったカルボニル炭素への攻撃が、 Sn(OR)₄触媒系では $\Delta G^{\ddagger} < 20$ kcal/mol (TS_{de})となっている.

反応時間1時間後の反応中間体のIRスペクトルは1590cm⁻¹に特有の吸収を示した(Figure 2, (e)). R₂Sn(OR)₂触媒では,架橋していないカーボナート部の吸収が1682 cm⁻¹に現れると報告されており⁴⁾,それよりも低波数のピークは,スズに直接架橋,もしくは嵌入したプロトン性溶媒分子を介して架橋したカーボナート種の吸収と考えられ,上記メカニズム中の**a**や**b**,もしくはそれらを部分構造として持つ多量化体の存在を示唆している.この反応機構に関する考察は,単にスズアルコキシドによる DMC 合成の反応経路の解明のみならず,類似の2核錯体,もしくは金属酸化物上でのカルボン酸のエステル化反応およびエステル交換反応の反応機構の解明にも寄与すると考えられる.

$$CO_2 + 2 MeOH \xrightarrow{Cat.} MeO OMe^+ H_2O$$

Scheme 1. Direct synthesis of DMC from CO₂ and MeOH.

Scheme 2. Generally accepted reaction scheme for the direct DMC synthesis using conventional $R_2Sn(OMe)_2$ catalyst.

Figure 1. Reaction diagram for the DMC synthesis using $Sn(Ot-Bu)_4$ catalyst, and some key intermediates and transition states.

文 献

Y. Masui, S. Haga, M. Onaka, *Chem. Lett.*, **40**, 1408 (2011).
T. Sakakura, J.-C. Choi, H. Yasuda, *Chem. Rev.* **107**, 2365 (2007).
K. Wakamatsu, A. Orita, J. Otera, *Organometallics*, **29**, 1290 (2010).

4) J.-C. Choi, T. Sakakura, T. Sako, J. Am. Chem. Soc., 121, 23793 (1999).

Scheme 3. Plausible reaction scheme for direct DMC synthesis using $Sn(Ot-Bu)_4$ catalyst.

Figure 2. FT-IR spectra of (a) nujol, (b) DMC, (c) Sn(Ot-Bu)₄, (d) hydrated Sn(Ot-Bu)₄, (e) reaction intermediates after 1 h.